Juan Carlos Mejuto Fernández-rekin lankidetzan egindako argitalpenak (23)

2016

  1. Electrical percolation of AOT-based microemulsions with n-alcohols

    Journal of Molecular Liquids, Vol. 215, pp. 18-23

2015

  1. Alkaline hydrolysis of vinclozolin: Effect of humic acids aggregates in water

    Journal of Molecular Catalysis A: Chemical, Vol. 401, pp. 13-17

  2. Cleavage of carbofuran and carbofuran-derivatives in micellar aggregates

    Progress in Reaction Kinetics and Mechanism, Vol. 40, Núm. 2, pp. 105-118

  3. Density prediction of ternary mixtures of ethanol + water + ionic liquid using backpropagation artificial neural networks

    Ionic liquid-based surfactant science: formulation, characterization and applications (John Wiley & Sons (USA)), pp. 447-458

2013

  1. Percolation threshold of AOT microemulsions with n-alkyl acids as additives prediction by means of artificial neural networks

    Tenside, Surfactants, Detergents, Vol. 50, Núm. 5, pp. 360-368

  2. Prediction of the penetration of drugs by artificial neural networks

    Iberian Conference on Information Systems and Technologies, CISTI

  3. Stability of humic substances self-assembly aggregates in the presence of pesticides

    Fresenius Environmental Bulletin, Vol. 22, Núm. 10 A, pp. 3065-3069

  4. Stability study of Iprodione in alkaline media in the presence of humic acids

    Chemosphere, Vol. 92, Núm. 11, pp. 1536-1541

2012

  1. Basic hydrolysis of carbofuran in the presence of cyclodextrins

    Supramolecular Chemistry, Vol. 24, Núm. 6, pp. 399-405

  2. Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions

    Chemosphere, Vol. 89, Núm. 11, pp. 1267-1271

  3. Degradation of carbofuran derivatives in restricted water environments: Basic hydrolysis in AOT-based microemulsions

    Journal of Colloid and Interface Science, Vol. 372, Núm. 1, pp. 113-120

  4. Predicción de la temperatura superior de disolución crítica mediante redes neuronales artificiales

    Revista Iberoamericana de Polímeros, Vol. 13, Núm. 6, pp. 295-306

  5. Starch-derived cyclodextrins and ttheir future in the food biopolymer industry

    Starch-Based Polymeric Materials and Nanocomposites: Chemistry, Processing, and Applications (CRC Press), pp. 167-182

2011

  1. Alkaline fading of triarylmethyl carbocations in self-assembly microheterogeneous media

    Progress in Reaction Kinetics and Mechanism, Vol. 36, Núm. 2, pp. 139-165

  2. Basic degradation of 3-keto-carbofuran in the presence of non-ionic self-assembly colloids

    Fresenius Environmental Bulletin, Vol. 20, Núm. 2, pp. 354-357

  3. Influence of anionic and nonionic micelles upon hydrolysis of 3-hydroxy-carbofuran

    International Journal of Chemical Kinetics, Vol. 43, Núm. 8, pp. 402-408

  4. N-alkylamines-based micelles aggregation number determination by fluorescence techniques

    Journal of Solution Chemistry, Vol. 40, Núm. 12, pp. 2072-2081

2010

  1. Cyclodextrin-surfactant mixed systems as reaction media

    Progress in Reaction Kinetics and Mechanism, Vol. 35, Núm. 2, pp. 105-129

  2. Factors controlling flavors binding constants to cyclodextrins and their applications in foods

    Food Research International, Vol. 43, Núm. 4, pp. 1212-1218