Tipos de campaña Astroturfing de contenidos desinformativos y polarizados en tiempos de pandemia en España

  1. Sergio Arce-García 1
  2. Elías Said-Hung 1
  3. Daria Mottareale-Calvanese 1
  1. 1 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

Zeitschrift:
Icono14

ISSN: 1697-8293

Datum der Publikation: 2023

Titel der Ausgabe: LTE1. Compromiso corporativo e inclusión social: De la ética empresarial al valor de marca. LTE2. Tecnología e innovación en la lucha contra la desinformación, noticias falsas y mentiras en la era de la posverdad

Ausgabe: 21

Nummer: 1

Art: Artikel

DOI: 10.7195/RI14.V21I1.1890 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Icono14

Zusammenfassung

Este documento procura determinar a aplicação de estratégias de Astroturfing no Twitter, a nível espanhol, durante o período pandémico devido à covid-19, na Primavera de 2020. Análise estatística, análise de rede e técnicas de aprendizagem de máquinas são aplicadas a 32.527 mensagens publicadas desde o decreto do estado de alarme em Espanha (14 de Março de 2020) até ao final de Maio de 2020, associadas a oito etiquetas que abordam tópicos relacionados com conteúdos desinformativos identificados por dois dos principais projectos de verificação de factos (Maldito Bulo e Newtral). Os dados permitem-nos observar a participação dos utilizadores (não dos bots), que desempenham o papel de influenciadores apesar de terem um perfil médio ou um perfil que está longe de ser considerado uma personalidade pública. A aplicação de Astroturfing pode ser vista como uma estratégia de comunicação utilizada para posicionar questões sobre redes sociais através da distribuição, amplificação e inundação de conteúdo desinformativo. O cenário permite-nos verificar a presença de um cenário de comunicação digital que favoreceria um quadro difícil de detectar, a partir de estratégias como a que foi estudada, visando quebrar o efeito sino e filtrar a bolha das redes sociais. Tudo com o objectivo de posicionar as questões ao nível da opinião pública.

Bibliographische Referenzen

  • Allem, Jon-Patrick; & Ferrara, Emilio (2018). Could social bots pose a threat to public health? American journal of public health, 108(8), 1005-1006. https://doi.org/10.2105/AJPH.2018.304512
  • Blondel, Vincent; Guillaume, Jean-Lup; Lambiotte, Renaud; & Lefebvre, Etienne (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10). https://doi.org/10.1088/1742-5468/2008/10/P10008
  • Boididou, Christina; Middleton, Stuarte-E.; Jin, Zhiwei; Papadopoulos, Symeon; Dang-Nguyen, Duc-Tien; Boato, Giulia; & Kompatsiaris, Yiannis (2018). Verifying information with multimedia content on Twitter. Multimedia tools and applications, 77(12), 15545-15571. https://doi.org/10.1007/s11042-017-5132-9
  • Bradshaw, Samantha; Bailey, Hanah; & Howard, Philip-N. (2021). Industrialized disinformation. 2020 Global inventory of organized social media manipulation. Working Paper 2021.1. Project on Computational Propaganda. https://cutt.ly/VOgTtjO
  • Chen, Tong; Liu, Jiqiang; Wu, Yalun; Tian, Yunzhe; Tong, Endong; Niu, Wenjia, Li, Yike, Xiang, Yingxiao; & Wang, Wei (2021). Survey on Astroturfing Detection and Analysis from an Information Technology Perspective. Secutiry and Communication Networks, 2021, 3294610. https://doi.org/10.1155/2021/3294610
  • Elmas, Tugrulcan (2019). Lateral Astroturfing Attacks on Twitter Trending Topics. AMLD EPFL. Lausanne. https://cutt.ly/4yGaj5L
  • Elmas, Tugrulcan; Overdorf, Rebekah; Özkalay, Ahmed-Furkan; & Aberer, Karl (2021). Ephemeral Astroturfing Attacks: The Case of Fake Twitter Trends. arXiv preprint arXiv:1910.07783. https://arxiv.org/abs/1910.07783.
  • Estrada-Cuzcano, Alonso; Alfaro-Mendives, Karen; & Saavedra-Vásquez, Valeria (2020). Desinformación y desinformación, Posverdad y noticias falsas: precisiones conceptuales, diferencias, similitudes y yuxtaposiciones. Información, cultura y sociedad, (42), 93-106. https://doi.org/10.34096/ics.i42.7427
  • Ferrara, Emilio; Varol, Onur; Davis, Clayton; Menczer, Filippo; & Flammini Alessandro (2016). The rise of social bots. Communications of the ACM, 59(7), 96–104. https://doi.org/10.1145/2818717
  • Flaxman, Seth; Goel, Sharad; & Rao, Justin-M. (2016). Filter Bubbles, Echo Chambers, and Online News Consumption. Public Opinion Quarterly, 80, 298–320. https://doi.org/10.1093/poq/nfw006
  • Gallwitz, Florian; & Kreil, Michael (2021). The Rise and Fall of “Social Bot”. Research (March 28, 2021). https://ssrn.com/abstract=3814191
  • González, Fernán (2020, 20 de mayo). Manifestantes de extrema izquierda gritan ¨¡Muerte al Rey y a sus hijas!¨. Ok Diario. https://cutt.ly/CyVjTUR.
  • Granovetter, Mark (1973). The strength of weak ties. American Journal of Sociology, 78, 1360-1380.
  • Grimme, Christian; Assenmacher, Dennis; & Adam, Lena (2018). Changing Perspectives: Is It Sufficient to Detect Social Bots?. In G. Meiselwitz (eds.) Social Computing and Social Media. User Experience and Behavior (pp. 445-461). Lecture Notes in Computer Science, vol. 10913. Springer, Cham. https://doi.org/10.1007/978-3-319-91521-0_32
  • Guess, Andrew; Nyhan, Brendan; & Reifler, Jason (2018). Selective Exposure to Misinformation: Evidence from the consumption of fake news during the 2016 U.S.Presidential campaign. European Research Council. https://cutt.ly/FOgUe1R.
  • Hansen, Derek-L.; Shneiderman, Ben, Smith, Marc-A.; & Himerlboim, Itai (2020). Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Elsevier. https://doi.org/10.1016/C2018-0-01348-1
  • Howard, Philip-N.; Bolsover, Gillian; Kollanyi, Bence; Bradshaw, Samantha; & Neudert, Lisa-Maria (2017). Junk News and Bots during the U.S. Election: What Were Michigan Voters Sharing Over Twitter? Computational Propaganda Project-Oxford Internet Institute, Data Memo, 1. https://cutt.ly/kRihRoY
  • Kearney, Michael-W. (2018). Tweetbotornot: An R package for classifying Twitter accounts as bot or not. https://github.com/mkearney/tweetbotornot
  • Kearney, Michael-W. (2019). Rtweet: Collecting y analyzing Twitter data. Journal of Open Source Software, 4(42), 1829. https://doi.org/10.21105/joss.01829
  • Keller, Franziska-B.; Schoch, David; Stier, Sebastian; & Yang, Jung-Hwan (2019). Political Astroturfing on Twitter: How to coordinate a disinformation campaign. Political Communication, 37(2), 256-280. https://doi.org/10.1080/10584609.2019.1661888
  • Kucharski, Adam (2016). Study epidemiology of fake news. Nature, 540(525). https://doi.org/10.1038/540525a
  • Luceri, Luca; Deb, Ashok; Badawy, Adam; & Ferrara, Emilio (2019). Red bots do it better: Comparative analysis of social bot partisan behavior. In Companion Proceedings of the 2019 World Wide Web Conference, 1007-1012. https://arxiv.org/abs/1902.02765
  • Martin, Shawn; Brown, W.-Michael; Klavans, Richard; & Boyack, Kevin-W. (2011). OpenOrd: An Open-Source Toolbox for Large Graph Layout. In Proc. SPIE, Visualization and Data Analysis 2011. San Francisco, Estados Unidos. https://doi.org/10.1117/12.871402
  • Martini, Franziska; Samula, Paul; Keller, Tobias-R., & Klinger, Ulrike (2021). Bot, or not? Comparing three methods for detecting social bots in five political discourses. Big Data & Society, 8(2), 1-13. https://doi.org/10.1177/20539517211033566
  • Mazzoleni, Gianpietro; & Bracciale, Roberta (2018). Socially mediated populism: the communicative strategies of political leaders on Facebook. Palgrave Communications, 4(50). https://doi.org/10.1057/s41599-018-0104-x
  • Magallón, Raúl (2019). Unfaking News. Cómo combatir la desinformación. Pirámide.
  • Ong, Jonathan-Corpus; Tapsell, Ross; & Curato, Nicole (2019) Tracking Digital Disinformation in the 2019 Philippine Midterm Election. New Mandala. https://cutt.ly/6RhPHt4
  • Pérez-Curiel, Concha; & Limón, Pilar (2019). Political influencers. A study of Donald Trump’s personal brand on Twitter and its impact on the media and users. Comunicación y Sociedad, 32(1), 57-75. https://doi.org/10.15581/003.32.1.57-75
  • Pérez, Jordi (2020, 21 de may). ¨Yo fui un bot¨: las confesiones de un agente dedicado al engaño en Twitter. El País. https://cutt.ly/wRihXGu
  • Pozzi, Federico-Alberto; Fersini, Elisabetta; Messina, Enza; & Liu, Bing (2017). The aim of Sentiment Analysis. Elsevier. https://doi.org/10.1016/C2015-0-01864-0
  • Ribera, Carles-Salom (2014). Estrategia en redes sociales basada en la teoría de los vínculos débiles. Más poder local, 19, 23-25. https://dialnet.unirioja.es/descarga/articulo/4753468.pdf
  • Said-Hung, Elías; Merino-Arribas, Adoración; & Martínez, Javier (2021). Evolución del debate académico en la Web of Science y Scopus sobre unfaking news (2014-2019). Estudios sobre el Mensaje Periodístico, 27(3), 961-971. https://doi.org/10.5209/esmp.71031
  • Salaverría, Ramón; Buslón, Nataly; López-Pan, Fernando; León, Bienvenido; López-Goñi, Ignacio; & Erviti, María-Carmen (2020). Desinformación en tiempos de pandemia: tipología de los bulos sobre la covid-19. El profesional de la información, 29(3). https://doi.org/10.3145/epi.2020.may.15
  • Sorensen, Anne; Andrews, Lynda; & Drennan, Judy (2017). Using social media posts as resources for engaging in value co-creation: The case for social media-based cause brand communities. Journal of Service Theory and Practice, 27(4), 898-922. https://doi.org/10.1108/JSTP-04-2016-0080
  • Tandoc, Edson-C.; Lim, Zheng-Wei; & Ling, Richard (2018). Defining “fake news” A typology of scholarly definitions. Digital journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143
  • Van-der-Linden, Sander; Maibach, Edward; Cook, John; Leiserowitz, Anthony; & Lewandowsky, Stephan (2017). Inoculating Against Misinformation. Science, 358(6367), 1141–1142. https://doi.org/10.17863/CAM.26207
  • Van-der-Veen, Han; Hiemstra, Djoerd; Van-den-Broek, Tijs; Ehrenhard, Michel; & Need, Ariana (2015). Determine the User Country of a Tweet. Social and Information Networks. https://arxiv.org/abs/1508.02483
  • Zerback, Thomas; & Töpfl, Florian (2021). Forged Examples as Disinformation: The Biasing Effects of Political Astroturfing Comments on Public Opinion Perceptions and How to Prevent Them. Political Psychology, 43(3), 399-418. https://doi.org/10.1111/pops.12767
  • Zhao, Zilong; Zhao, Jichang; Sano, Yukie; Levy, Orr; Takayasu, Hideki; Takayasu, Misako; Li, Daqing; Wu, Junjie; & Havlin, Shlomo (2020). Fake news propagates differently from real news even at early stages of spreading. EPJ Data Science, 9(7). https://doi.org/10.1140/epjds/s13688-020-00224-z
  • Zheng, Haizhong; Xue, Minhui; Hao, Lu; Hao, Shuang; Zhu, Haojin; Liang, Xiaohui; & Ross, Keith (2017). Smoke Screener or Straight Shooter: Detecting Elite Sybil Attack. Social and Information Networks. https://arxiv.org/abs/1709.06916