Desarrollo de la alta capacidad durante la infancia temprana

  1. M. Isabel Gómez León 1
  1. 1 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

Journal:
Papeles del psicólogo

ISSN: 0214-7823 1886-1415

Year of publication: 2020

Issue Title: Hacia la integración de la psicoterapia

Volume: 41

Issue: 2

Pages: 147-158

Type: Article

DOI: 10.23923/PAP.PSICOL2020.2930 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Papeles del psicólogo

Sustainable development goals

Abstract

Gifted children seem to benefit more from experience than their non-gifted peers by developing increasingly efficient behaviors in more complex environments. Most of the models that attempt to explain this greater adaptability focus on the study of the higher cognitive functions and the cortical regions that support them. However, during the early stages of development these areas are still functionally and structurally immature. The objective of this review is to summarize the subcortical and cortical neurobiological mechanisms underlying the interaction with the environment, which motivate the practice and automation of higher cognitive processes in gifted children from the early stages of postnatal development.

Bibliographic References

  • Alnæs, D., Kaufmann, T., Doan, N. T., Córdova-Palomera, A., Wang, Y., Bettella, F., … Westlye, L. T. (2018). Association of heritable cognitive ability and psychopathology with white matter propert ies in chi ldren and adolescents. JAMA Psychiatry, 75(3), 287–295. doi: 10.1001/jamapsychiatry.2017.4277
  • Badura, A., Verpeut, J. L., Metzger, J. W., Pereira, T. D., Pisano, T. J., Deverett, B., … Wang, S. S. (2018). Normal cognitive and social development require posterior cerebellar activity. eLife, 7, e36401. doi: 10.7554/eLife.36401
  • Barbey, A.K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(8), 20. doi:10.1016/j.tics.2017.10.001
  • Beckmann, E., y Minnaert, A. (2018). Non-cognitive characteristics of gifted students with learning disabilities: An indepth systematic review. Frontiers in Psychology, 9, 504. doi: 10.3389/fpsyg.2018.00504
  • Benedek, M., Jauk, E., Beaty, R.E., Fink, A., Koschutnig, K., y Neubauer, A. (2016). Brain mechanisms associated with internally directed attention and self-generated thought Scientific Reports, 6:22959. doi: 10.1038/srep22959
  • Berger, A., Tzur, G., y Posner, M.I. (2006). Infant brains detect arithmetic errors. Proceedings of the National Academy of Sciences, 103(33), 12649-12653. doi: 10.1073/pnas.0605350103
  • Boot, N., Baas, M., Gaal, SV., Cools, R., Dreu, C.K (2017). Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neuroscience & Biobehavioral Reviews, 78, 13-23. doi: 10.1016/j.neubiorev.2017.04.007
  • Buttelmann, F., y Karbach, J. (2017). Development and plasticity of cognitive flexibility in early and middle childhood. Frontiers in Psychology, 8: 1040. doi: 10.3389/fpsyg.2017.01040
  • Chevalier, N., y Blaye, A. (2016). Metacognitive monitoring of executive control engagement during childhood. Child Development, 87, 1264-1276. doi: 10.1111/cdev.12537.
  • Chevalier, N., Kurth, S., Doucette, M.R., Wiseheart, M., Deoni, S.C., Dean, D.C., ... LeBourgeois, M.K. (2015). Myelination is associated with processing speed in early childhood: Preliminary insights. PloS one, 10(10), e0139897. doi: 10.1371/journal.pone.0139897
  • Dai, X., Müller, H.G., Wang, J.L., y Deoni, S.C.L. (2019). Brain Struct Funct. Age-dynamic networks and functional correlation for early white matter myelination. Brain Structure and Function, 224, 535. https://doi.org/10.1007/s00429-018-1785-z
  • Deoni, S.C., O’Muircheartaigh, J., Elison, J.T., Walker, L., Doernberg, E., Waskiewicz, N., ... Jumbe, N.L. (2016). White matter maturation profiles through early childhood predict general cognitive ability. Brain Structure and Function, 221(2), 1189-1203. doi: 10.1007/s00429-014-0947-x
  • Dunst, B., Benedek, M., Jauk, E., Bergner, S., Koschutnig, K., Sommer, M., …Neubauer A.C. (2014). Neural efficiency as a function of task demands. Intelligence, 42, 22-30. doi: 10.1016/j.intell.2013.09.005
  • Duszkiewicz, A.J., McNamara, C.G., Takeuchi, T., y Genzel, L. (2019). Novelty and dopaminergic modulation of memory persistence: A tale of two systems. Trends in Neurosciences, 42(2), 102-114. doi: 10.1016/j.tins.2018.10.002
  • Fiske, A., y Holmboe, K. (2019). Neural substrates of early executive function development. Developmental Review, 52, 42- 62. https://doi.org/10.1016/j.dr.2019.100866.
  • Gotlieb, R., Hyde, E., Immordino-Yang, M.H,. y Kaufman, S.B. (2016). Cultivating the social–emotional imagination in gifted education: Insights from educational neuroscience. Annals of the New York Academy Sciences, 1377(1), 22-31. doi: 10.1111/nyas.13165.
  • Gómez-León, M.I. (2019a). Conexión neuronal en el trastorno del espectro autista. Psiquiatría Biológica, 26(1), 7-14. https://doi.org/10.1016/j.psiq.2019.02.001
  • Gómez-León, M.I. (2019b). Psicobiología de las altas capacidades. Una revisión actualizada, Psiquiatría Biológica, 26(3), 105-112. https://doi.org/10.1016/j.psiq.2019.09.001
  • Goriounova, N.A., Mansvelder, H.D. (2019). Genes, cells and brain areas of intelligence. Frontiers in Human Neuroscience, 13, 44. doi: 10.3389/fnhum.2019.00044
  • Hansen, N. (2017). The longevity of hippocampus-dependent memory is orchestrated by the locus coeruleus-noradrenergic system. Neural Plast ici ty, 2727602. doi: 10.1155/2017/2727602
  • Jeon, H.A, Kuhl, U., y Friederici, A.D. (2019). Mathematical expertise modulates the architecture of dorsal and corticothalamic white matter tracts. Scientific Reports, 9, 6825 https://doi.org/10.1038/s41598-019-43400-6
  • Jeremy, D., y Schmahmann, J.D. (2019). The cerebellum and cognit ion. Neuroscience Let ters, 688, 62-75. https://doi.org/10.1016/j.neuroimage.2011.08.065.
  • Kaminski, J.A., Schlagenhauf, F., Rapp, M., Awasthi, S., Ruggeri, B., Deserno, L. (2018). Epigenetic variance in dopamine D2 receptor: A marker of IQ malleabil i ty? Translational Psychiatry, 8, 169. doi: 10.1038/s41398- 018-0222-7
  • Khalil, R., Godde, B., y Karim, A.A. (2019).The link between creativity, cognition, and creative drives and underlying neural mechanisms. Frontiers in Neural Circuits, 13, 18. doi: 10.3389/fncir.2019.00018
  • Koziol, L.F., Budding, D.E., y Chidekel, D. Cerebellum (2010) Adaptation, expertise, and giftedness: Towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebel lum 9, 499. https://doi.org/10.1007/s12311-010-0192-7
  • Lebel, C., y Deoni, S. (2018). The development of brain white matter microstructure. NeuroImage, 182(15), 207-218. https://doi.org/10.1016/j.neuroimage.2017.12.097
  • Lee, K.H., Choi, Y.Y., Gray, J.R., Cho, S.H., Chae, J.H., Lee, S., y Kim, K. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage, 29(2), 578-86. doi: 10.1016/j.neuroimage.2005.07.036
  • Lépine, R., Barrouillet, P., y Camos, V. (2005) What makes working memory spans so predictive of high-level cognition? Psychonomic Bulletin & Review, 12(1), 165-70. doi: 10.3758/bf03196363
  • Liu, T., Xiao, T., Shi, J., y Zhao, L. (2011) Sensory gating, inhibition control and child intelligence: an event-related potentials s tudy. Neuroscience, 189, 250-7. doi: 10.1016/j.neuroscience.2011.05.009
  • Montero-Linares, J., Navarro-Guzmán, J.I., y Aguilar-Villagrán, M. (2013). Procesos de automatización cognitiva en alumnado con altas capacidades intelectuales. Ana les de Ps i co log ía , 29(2 ) , 454 -461. http://dx.doi.org/10.6018/analesps.29.2.123291
  • Nusbaum, F., Hannoun, S., Kocevar, G., Stamile, C., Fourneret, P., Revol, O., y Sappey-Marinier, D. (2017). Hemispheric differences in white matter microstructure between two profiles of children with high intelligence quotient vs. controls: A tract-based spatial statistics study. Frontiers in Neuroscience, 11, 173. doi: 10.3389/fnins.2017.00173
  • Pidoux, L., Le Blanc, P., Levenes, C., y Leblois, A. (2018). A subcortical circuit linking the cerebellum to the basal ganglia engaged in vocal learning. eLife, 7 , e32167. doi: 10.7554/eLife.32167
  • Rinaldi, L., y Karmiloff-Smith, A. (2017). Intelligence as a developing function: A neuroconstructivist approach. Journal of Intelligence, 5(2), 18. doi: 10.3390/jintelligence5020018
  • Santarnecchia, E., Emmendorfera, A., y Pascual-Leone, A. (2017). Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study. Intelligence, 63, 9-28. https://doi.org/10.1016/j.intell.2017.04.008
  • Sastre-Riba, S., y Viana-Sáenz, L. (2016). Funciones ejecutivas y alta capacidad intelectual. Revista de Neurolología, 62(1), 65-71 https://doi.org/10.33588/rn.62S01.2016025
  • Sastre-Riba, S., y Ortiz, T. (2018). Neurofuncionalidad ejecutiva: Estudio comparativo en las altas capacidades. Revis ta de Neurología, 66(1), 51-56 doi: 10.33588/rn.66S01.2018026
  • Schnack, H.G., Haren, N.E.M., Brouwer, R.M., Evans, A., Durston, S., Boomsma DI… Pol, H. (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cerebral Cortex, 25(6), 1608-1617. https://doi.org/10.1093/cercor/bht357
  • Shi, J., Tao, T., Chen, W., Cheng, L., Wang, L., y Zhang, X. (2013). Sustained attention in tntellectually gifted children assessed using a Continuous Performance Test. PloS one, 8(2), e57417. doi: 10.1371/journal.pone.0057417.
  • Sokolov, A. A., Miall, R. C., y Ivry, R. B. (2017). The cerebel lum: Adaptive predict ion for movement and cognition. Trends in Cognitive Sciences, 21(5), 313–332. doi: 10.1016/j.tics.2017.02.005
  • Steiner, H.H., y Carr, M. (2013). Cognitive development in gifted children: Toward a more precise understanding of emerging differences in intelligence. Educational Psycholy Review, 15, 215-246. https://doi.org/10.1023/A:1024636317011
  • Vaivre-Douret, L. (2011). Developmental and cognitive characteristics of high-level potentialities (highly gifted) children. International Journal of Pediatrics, 420297. doi: 10.1155/2011/420297.
  • Wagatsuma, A., Okuyama, T., Sun, C., Smith, L., Abe, K., y Tonegawa, S. (2018). Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proceedings of the National Academy of Sciences USA, 115(2), 310-316. doi: 10.1073/pnas.1714082115
  • Wang, S.S., Kloth, A.D., y Badura, A. (2014). The cerebellum, sensitive periods, and autism. Neuron, 83(3), 518- 532. doi: 10.1016/j.neuron.2014.07.016