Robótica Submarina: Conceptos, Elementos, Modelado y Control

  1. Héctor A. Moreno 1
  2. Roque Saltarén 2
  3. Lisandro Puglisi 2
  4. Isela Carrera 3
  5. Pedro Cárdenas 4
  6. César Álvarez 5
  1. 1 Instituto Tecnológico Autónomo de México
    info

    Instituto Tecnológico Autónomo de México

    Ciudad de México, México

    ROR https://ror.org/029md1766

  2. 2 Universidad Politécnica de Madrid-CSIC
  3. 3 Instituto Tecnológico y de Estudios Superiores de Monterrey
    info

    Instituto Tecnológico y de Estudios Superiores de Monterrey

    Monterrey, México

    ROR https://ror.org/03ayjn504

  4. 4 Universidad Nacional de Colombia
    info

    Universidad Nacional de Colombia

    Bogotá, Colombia

    ROR https://ror.org/059yx9a68

  5. 5 La Universidad del Zulia
    info

    La Universidad del Zulia

    Maracaibo, Venezuela

    ROR https://ror.org/04vy5s568

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Ano de publicación: 2014

Volume: 11

Número: 1

Páxinas: 3-19

Tipo: Artigo

DOI: 10.1016/J.RIAI.2013.11.001 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Revista iberoamericana de automática e informática industrial ( RIAI )

Obxectivos de Desenvolvemento Sustentable

Resumo

Los robots submarinos han revolucionado la exploracio¿n del fondo marino. Por otro lado, estos robots han permitido realizar operaciones en aguas profundas sin la necesidad de enviar un veh¿ıculo tripulado por humanos. El futuro de esta tecnolog¿ıa es prometedor. El propo’ito de este documento es servir de primer contacto con este tema y va dirigido a estudiantes de postgrado, ingenieros e investigadores con intere’ en la robo¿tica submarina. Adema’, se reporta el estado actual de los diferentes aspectos que giran alrededor de esta a¿rea de la robo¿tica.

Referencias bibliográficas

  • Acosta, G., Curti, H., Calvo, O., Rossi, S., 2008. Some issues on the design of a low-cost autonomous underwater vehicle with an intelligent dynamic mission planner for pipeline and cable tracking. In: Inzartsev, A. (Ed.), Underwater Vehicles. InTech, Ch. 1, pp. 1–19.
  • Álvarez, C., 2008. Concepción y desarrollo de un vehículo submarino robótico de estructura paralela de geometría variable. Ph.D. thesis, Univesidad Politécnica de Madrid, Madrid, España.
  • Álvarez, C., Saltarén, R., Aracil, R., García, C., 2009. Concepción, desarrollo y avances en el control de navegación de robots submarinos paralelos: el robot remo i. Revista Iberoamericana de Automática e Informática industrial 6 (3), 92–100.
  • Amat, J., Escote, O., Frigola, M. anb Giralt, X., Hernansanz, A., 2006. Milana: a lowcost glider used for building a map of barcelona sea bed. In: Robotics and Automation in the Maritime Industries AUTOMAR, Madrid, Spain. pp. 295–304.
  • Anderson, J. M., Chabra, N. K., 2002. Maneuvering and stability performance of a robotic tuna. Integrative and Comparative Biology 42 (1), 118–126.
  • Antonelli, G., 2003. Underwater Robots: Motion and Force Control of VehicleManipulator. Springer-Verlag.
  • Antonelli, G., Fossen, T. I., Yoerger, D. R., 2008. Underwater Robotics. In: Siciliano, B., Khatib, O. (Eds.), Springer Handbook of Robotics. Springer Berlin Heidelberg, Berlin, Heidelberg, Ch. 44, pp. 987–1008.
  • Bachmayer, R., Whitcomb, L., Grosenbaugh, M., 2000. An accurate four quadrant nonlinear dynamical model for marine thrusters. IEEE Journal of Oceanic Engineering 25 (1), 146 – 159.
  • Boyer, F., Chablat, D., Lemoine, P., Wenger, P., 2009. The eel-like robot. In: Proceedings of the ASME IDETC/CIE 2009, San Diego, USA.
  • Bradley, A., Feezor, M., Singh, H., Sorrell, F., 2001. Power systems for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering 26 (4), 526538.
  • Caffaz, A., Caiti, A., Casalino, G., Turetta, A., 2010. The hybrid glider/auv folaga. Robotics Automation Magazine, IEEE 17 (1), 31 –44. DOI: 10.1109/MRA.2010.935791
  • Cavallo, E., Michelini, R., Filaretov, V., 2004. Conceptual design of an auv equipped with a three degrees of freedom vectored thruster. Journal of Intelligent and Robotic Systems 39 (4), 365–391.
  • Chen, I., Li, H., Cathala, A., 1999. Design and simulation of amoebot a metamorphic underwater vehicle. In: Proceedengs of the International Conference of Robotics and Automation. pp. 90–95.
  • Davis, Russ E.; Eriksen, C. C., Jones, C., 2002. Autonomous buoyancy-driven underwater gliders. The Technology and Applications of Autonomous Underwater Vehicles. G.Griffiths, ed., London, England.
  • de la Cruz García, J. M., Almansa, J. A., Sierra, J. M. G., 2012. Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática Industrial 9 (3), 205 – 218.
  • DeBitetto, P., 1995. Fuzzy logic for depth control of unmanned undersea vehicles. IEEE Journal of Oceanic Engineering 20 (3), 242 – 248.
  • DeNovi, G., Melchiorri, C., García, J., Sanz, P., Ridao, P., Oliver, G., 2010. A new approach for a reconfigurable autonomous underwater vehicle for intervention. IEEE Aerospace and Electronic Systems Magazine 25 (11), 32–36.
  • Desset, S., Damus, R., Hover, F., Morash, J., Polidoro, V., 2005. Closer to deep underwater science with odyssey iv class hovering autonomous underwater vehicle (hauv). In: IEEE Oceans 2005 - Europe. Vol. 2. pp. 758 – 762.
  • Dudek, G., Giguere, P., Prahacs, C., Saunderson, S., Sattar, J., Torres-Mendez, L.-A., Jenkin, M., German, A., Hogue, A., Ripsman, A., Zacher, J., Milios, E., Liu, H., Zhang, P., Buehler, M., Georgiades, C., 2007. Aqua: An amphibious autonomous robot. Computer 40 (1), 46 –53. DOI: 10.1109/MC.2007.6
  • Evans, J., Redmond, P., Plakas, C., Hamilton, K., Lane, D., 2003. Autonomous docking for intervention-auvs using sonar and video-based real-time 3d pose estimation. Vol. 4. pp. 2201 – 2210.
  • Fossen, T., 1991. Nonlinear modeling and control of underwater vehicles. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim.
  • Fossen, T., 2002. Marine Control Systems. Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics.
  • Fossen, T., Sagatun, S., 1991. Adaptive control of nonlinear underwater robotic systems. In: Proceedings of the IEEE International Conference on Robotics and Automation. pp. 1687–1695.
  • Goheen, K., Jeffery, R., 1990. Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering 15 (3), 144–151.
  • Graver, J., 2005. Undewater gliders: Dynamics, control and design. Ph.D. thesis, Princeton University, USA.
  • Griffiths, G., Ed., Davis, R. E., Eriksen, C. C., Jones, C. P., 2002. Autonomous buoyancy-driven underwater gliders. In: Technology and Applications of Autonomous Underwater Vehicles. Taylor and Francis, London, England.
  • Guo, J., Chiu, F.-C., Huang, C.-C., 2003. Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Engineering 30 (16), 2137 – 2155.
  • Guo, J., Huang, S., 1996. Adaptive control of nonlinear underwater robotic systems. In: Proceedings of the Symp. on Autonomous Underwater Vehicle Technology. pp. 285–289.
  • Healey, A., Lienard, D., 1993. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering 18 (3), 327–339.
  • Innocenti, M., Campa, G., 1999. Robust control of underwater vehicles: Sliding mode vs. lmi synthesis. In: LMI Synthesis. American Controls Conference. pp. 3422–3426.
  • Iwasaki, M., Akizono, J., Takahashi, H., Umetani, T., Nemoto, T., Azakura, O., Asayama, K., 1987. Development on aquatic walking robot for underwater inspection. Report of the Port and Harbour Research Institute 26 (5), 393– 422.
  • Kim, E., Yourn, Y., 2004. Design and dynamic analysis of fish robottuna. In: Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, USA. pp. 4887 – 4892.
  • Kinsey, J., Yoerger, D., Jakuba, M., Camilli, R., Fisher, C., Christopher, R., 2011. Assessing the deepwater horizon oil spill with the sentry autonomous underwater vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 261 – 267.
  • Le Page, Y., Holappa, K., 2000. Simulation and control of an autonomous underwater vehicle equipped with a vectored thruster. In: OCEANS 2000 MTS/IEEE Conference and Exhibition. pp. 2129 –2134 vol.3.
  • Lin, T., Gilbert, J., 1991. Analyses of magnetohidrodynamic propulsion with sea water for underwater vehicles. American Institute of Aeronautics and Astronautics.
  • Low, K. H., Willy, A., 2005. Development and initial investigation of ntu robotic fish with modular flexible fins. In: Proceedings of the IEEE International Conference on Mechatronics and Automation. pp. 958–963.
  • Marani, G., Choi, S. K., Yuh, J., 2009. Underwater autonomous manipulation for intervention missions auvs. Ocean Engineering 36 (1), 15 – 23.
  • Morel, Y., Leonessa, A., 2003. Adaptive Nonlinear Tracking Control of an Underactuated Non-minimum Phase Model of a Marine Vehicle Using Ultimate Boundedness. In: 42nd IEEE Conference on Decision and Control.
  • Moreno, H. A., Puglisi, L. J., Saltaren, R. J., Carrera, I., 2011. Kinematic analysis of an underwater parallel robot. In: OCEANS 2011 IEEE Spain. pp. 1–6.
  • Newman, 1977. Marine Hidrodynamics.
  • Nie, J., Yuh, J., Kardash, E., Fossen, T. I., 1998. On-board sensor-based adaptive control of small uuvs in very shallow water. In: Proc. of IFAC-Control applications in Marine Systems. pp. 201–206.
  • Paster, D., 1986. Importance of hydrodynamic considerations for underwater vehicle design. OCEANS 18, 1413–1422.
  • Polsenberg, A., Milano, M., Gsell, M., Fischer, K., 2005. Synthetic jet propulsion for small underwater vehicles. In: Proceedengs of the International Conference of Robotics and Automation. pp. 181–187.
  • Potter, M., Wiggert, D., Hondzo, M., 1998. Mecanica de Fluidos. Pretince Hall.
  • Prats, M., Ribas, D., Palomeras, N., Garcia, J. C., Nannen, V., Wirth, S., Fernandez, J. J., Beltran, J. P., Campos, R., Ridao, P., Sanz, P. J., Oliver, G., Carreras, M., Gracias, N., Marin, R., Ortiz, A., January 2012. Reconfigurable AUV for intervention missions: A case study on underwater object recovery. Journal of Intelligent Service Robotics 5 (1), 19–31.
  • Ridao, P., J., Y., Batlle, J., Sugihara, K., 2000. On auv control architecture. In: Proceedings of the International Conference on Intelligent Robots and Systems. pp. 855–860.
  • Ross, C., 2006. A conceptual design of an underwater vehicle. Ocean Engineering 33 (16), 2087–2104.
  • Rossi, C., Colorado, J., Coral, W., Barrientos, A., 2011. Bending continuous structures with smas: a novel robotic fish design. Bioinspiration & Biomimetics 6, 045005.
  • Saltaren, R., Aracil, R., Alvarez, C., Yime, E., Sabater, J., sep. 2007. Field and service applications - exploring deep sea by teleoperated robot - an underwater parallel robot with high navigation capabilities. Robotics Automation Magazine, IEEE 14 (3), 65–75.
  • SNAME, 1950. Nomenclature for treating the motion of a submerged body through a fluid. The Society of Naval Architects and Marine Engineers. Technical and Research bulletin No. 1-5.
  • Valavanis, K., Gracanin, D., Matijasevic, M., Kolluru, R., 1997. Control architectures for autonomous underwater vehicles. IEEE Control Systems 17 (6), 48–64.
  • van de Ven, P. W. J., Flanagan, C., Toal, D., Aug. 2005. Neural network control of underwater vehicles. Eng. Appl. Artif. Intell. 18 (5), 533–547.
  • Wang, W., Engelaar, R., Chen, X., Chase, J., 2009. The state-of-art of underwater vehicles - theories and applications. Mobile Robots - State of the Art in Land, Sea, Air, and Collaborative Missions, X.Q. Chen, Y.Q. Chen and J.G. Chase (Ed.), InTech.
  • Yime, E., 2008. Modelo matemático y control vectorial de robots submarinos de geometría variable. Ph.D. thesis, Univesidad Politécnica de Madrid, Madrid, España.
  • Yoerger, D., Cooke, J., J., S., 1990. The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering 15 (3), 167–178.
  • Yoerger, D., Slotine, J., 1985. Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering 10 (4), 462–470.
  • Yuh, J., 1990. A neural net controller for underwater robotic vehicles. IEEE Journal of Oceanic Engineering 15 (3), 161–166.
  • Yuh, J., 1994. Learning control of underwater robotic vehicles. IEEE Control System 14 (2), 39–46.
  • Yuh, J., January 2000. Design and control of autonomous underwater robots: A survey. Auton. Robots 8 (1), 7–24.
  • Yuh, J., Nie, J., Lee, C., 1999. Experimental study on adaptive control of underwater robots. In: Proceedings of the IEEE International Conference on Mechatronics and Automation. pp. 393–398.
  • Zhang, Y., Tian, J., Su, D., Wang, S., 2006. Research on the hierarchical supervisory control of underwater glider. In: Proceedigs of IROS 2006. pp. 5509 –5513.