Robótica Submarina: Conceptos, Elementos, Modelado y Control

  1. Héctor A. Moreno 1
  2. Roque Saltarén 2
  3. Lisandro Puglisi 2
  4. Isela Carrera 3
  5. Pedro Cárdenas 4
  6. César Álvarez 5
  1. 1 Instituto Tecnológico Autónomo de México
    info

    Instituto Tecnológico Autónomo de México

    Ciudad de México, México

    ROR https://ror.org/029md1766

  2. 2 Universidad Politécnica de Madrid-CSIC
  3. 3 Instituto Tecnológico y de Estudios Superiores de Monterrey
    info

    Instituto Tecnológico y de Estudios Superiores de Monterrey

    Monterrey, México

    ROR https://ror.org/03ayjn504

  4. 4 Universidad Nacional de Colombia
    info

    Universidad Nacional de Colombia

    Bogotá, Colombia

    ROR https://ror.org/059yx9a68

  5. 5 La Universidad del Zulia
    info

    La Universidad del Zulia

    Maracaibo, Venezuela

    ROR https://ror.org/04vy5s568

Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2014

Volume: 11

Issue: 1

Pages: 3-19

Type: Article

DOI: 10.1016/J.RIAI.2013.11.001 DIALNET GOOGLE SCHOLAR

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Sustainable development goals

Abstract

Underwater robots have considerably changed the exploration of deep sea. Even more, these robots allow performing opera- tions in remote subsea installations. The future of this techno- logy is promising. The purpose of this work is to provide an insight into the subject to postgraduate students, engineers and researchers interested in underwater robotics. Additionally, this work presents a survey of the different subjects that this branch of robotics include.

Bibliographic References

  • Acosta, G., Curti, H., Calvo, O., Rossi, S., 2008. Some issues on the design of a low-cost autonomous underwater vehicle with an intelligent dynamic mission planner for pipeline and cable tracking. In: Inzartsev, A. (Ed.), Underwater Vehicles. InTech, Ch. 1, pp. 1–19.
  • Álvarez, C., 2008. Concepción y desarrollo de un vehículo submarino robótico de estructura paralela de geometría variable. Ph.D. thesis, Univesidad Politécnica de Madrid, Madrid, España.
  • Álvarez, C., Saltarén, R., Aracil, R., García, C., 2009. Concepción, desarrollo y avances en el control de navegación de robots submarinos paralelos: el robot remo i. Revista Iberoamericana de Automática e Informática industrial 6 (3), 92–100.
  • Amat, J., Escote, O., Frigola, M. anb Giralt, X., Hernansanz, A., 2006. Milana: a lowcost glider used for building a map of barcelona sea bed. In: Robotics and Automation in the Maritime Industries AUTOMAR, Madrid, Spain. pp. 295–304.
  • Anderson, J. M., Chabra, N. K., 2002. Maneuvering and stability performance of a robotic tuna. Integrative and Comparative Biology 42 (1), 118–126.
  • Antonelli, G., 2003. Underwater Robots: Motion and Force Control of VehicleManipulator. Springer-Verlag.
  • Antonelli, G., Fossen, T. I., Yoerger, D. R., 2008. Underwater Robotics. In: Siciliano, B., Khatib, O. (Eds.), Springer Handbook of Robotics. Springer Berlin Heidelberg, Berlin, Heidelberg, Ch. 44, pp. 987–1008.
  • Bachmayer, R., Whitcomb, L., Grosenbaugh, M., 2000. An accurate four quadrant nonlinear dynamical model for marine thrusters. IEEE Journal of Oceanic Engineering 25 (1), 146 – 159.
  • Boyer, F., Chablat, D., Lemoine, P., Wenger, P., 2009. The eel-like robot. In: Proceedings of the ASME IDETC/CIE 2009, San Diego, USA.
  • Bradley, A., Feezor, M., Singh, H., Sorrell, F., 2001. Power systems for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering 26 (4), 526538.
  • Caffaz, A., Caiti, A., Casalino, G., Turetta, A., 2010. The hybrid glider/auv folaga. Robotics Automation Magazine, IEEE 17 (1), 31 –44. DOI: 10.1109/MRA.2010.935791
  • Cavallo, E., Michelini, R., Filaretov, V., 2004. Conceptual design of an auv equipped with a three degrees of freedom vectored thruster. Journal of Intelligent and Robotic Systems 39 (4), 365–391.
  • Chen, I., Li, H., Cathala, A., 1999. Design and simulation of amoebot a metamorphic underwater vehicle. In: Proceedengs of the International Conference of Robotics and Automation. pp. 90–95.
  • Davis, Russ E.; Eriksen, C. C., Jones, C., 2002. Autonomous buoyancy-driven underwater gliders. The Technology and Applications of Autonomous Underwater Vehicles. G.Griffiths, ed., London, England.
  • de la Cruz García, J. M., Almansa, J. A., Sierra, J. M. G., 2012. Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática Industrial 9 (3), 205 – 218.
  • DeBitetto, P., 1995. Fuzzy logic for depth control of unmanned undersea vehicles. IEEE Journal of Oceanic Engineering 20 (3), 242 – 248.
  • DeNovi, G., Melchiorri, C., García, J., Sanz, P., Ridao, P., Oliver, G., 2010. A new approach for a reconfigurable autonomous underwater vehicle for intervention. IEEE Aerospace and Electronic Systems Magazine 25 (11), 32–36.
  • Desset, S., Damus, R., Hover, F., Morash, J., Polidoro, V., 2005. Closer to deep underwater science with odyssey iv class hovering autonomous underwater vehicle (hauv). In: IEEE Oceans 2005 - Europe. Vol. 2. pp. 758 – 762.
  • Dudek, G., Giguere, P., Prahacs, C., Saunderson, S., Sattar, J., Torres-Mendez, L.-A., Jenkin, M., German, A., Hogue, A., Ripsman, A., Zacher, J., Milios, E., Liu, H., Zhang, P., Buehler, M., Georgiades, C., 2007. Aqua: An amphibious autonomous robot. Computer 40 (1), 46 –53. DOI: 10.1109/MC.2007.6
  • Evans, J., Redmond, P., Plakas, C., Hamilton, K., Lane, D., 2003. Autonomous docking for intervention-auvs using sonar and video-based real-time 3d pose estimation. Vol. 4. pp. 2201 – 2210.
  • Fossen, T., 1991. Nonlinear modeling and control of underwater vehicles. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim.
  • Fossen, T., 2002. Marine Control Systems. Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics.
  • Fossen, T., Sagatun, S., 1991. Adaptive control of nonlinear underwater robotic systems. In: Proceedings of the IEEE International Conference on Robotics and Automation. pp. 1687–1695.
  • Goheen, K., Jeffery, R., 1990. Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering 15 (3), 144–151.
  • Graver, J., 2005. Undewater gliders: Dynamics, control and design. Ph.D. thesis, Princeton University, USA.
  • Griffiths, G., Ed., Davis, R. E., Eriksen, C. C., Jones, C. P., 2002. Autonomous buoyancy-driven underwater gliders. In: Technology and Applications of Autonomous Underwater Vehicles. Taylor and Francis, London, England.
  • Guo, J., Chiu, F.-C., Huang, C.-C., 2003. Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Engineering 30 (16), 2137 – 2155.
  • Guo, J., Huang, S., 1996. Adaptive control of nonlinear underwater robotic systems. In: Proceedings of the Symp. on Autonomous Underwater Vehicle Technology. pp. 285–289.
  • Healey, A., Lienard, D., 1993. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering 18 (3), 327–339.
  • Innocenti, M., Campa, G., 1999. Robust control of underwater vehicles: Sliding mode vs. lmi synthesis. In: LMI Synthesis. American Controls Conference. pp. 3422–3426.
  • Iwasaki, M., Akizono, J., Takahashi, H., Umetani, T., Nemoto, T., Azakura, O., Asayama, K., 1987. Development on aquatic walking robot for underwater inspection. Report of the Port and Harbour Research Institute 26 (5), 393– 422.
  • Kim, E., Yourn, Y., 2004. Design and dynamic analysis of fish robottuna. In: Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, USA. pp. 4887 – 4892.
  • Kinsey, J., Yoerger, D., Jakuba, M., Camilli, R., Fisher, C., Christopher, R., 2011. Assessing the deepwater horizon oil spill with the sentry autonomous underwater vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 261 – 267.
  • Le Page, Y., Holappa, K., 2000. Simulation and control of an autonomous underwater vehicle equipped with a vectored thruster. In: OCEANS 2000 MTS/IEEE Conference and Exhibition. pp. 2129 –2134 vol.3.
  • Lin, T., Gilbert, J., 1991. Analyses of magnetohidrodynamic propulsion with sea water for underwater vehicles. American Institute of Aeronautics and Astronautics.
  • Low, K. H., Willy, A., 2005. Development and initial investigation of ntu robotic fish with modular flexible fins. In: Proceedings of the IEEE International Conference on Mechatronics and Automation. pp. 958–963.
  • Marani, G., Choi, S. K., Yuh, J., 2009. Underwater autonomous manipulation for intervention missions auvs. Ocean Engineering 36 (1), 15 – 23.
  • Morel, Y., Leonessa, A., 2003. Adaptive Nonlinear Tracking Control of an Underactuated Non-minimum Phase Model of a Marine Vehicle Using Ultimate Boundedness. In: 42nd IEEE Conference on Decision and Control.
  • Moreno, H. A., Puglisi, L. J., Saltaren, R. J., Carrera, I., 2011. Kinematic analysis of an underwater parallel robot. In: OCEANS 2011 IEEE Spain. pp. 1–6.
  • Newman, 1977. Marine Hidrodynamics.
  • Nie, J., Yuh, J., Kardash, E., Fossen, T. I., 1998. On-board sensor-based adaptive control of small uuvs in very shallow water. In: Proc. of IFAC-Control applications in Marine Systems. pp. 201–206.
  • Paster, D., 1986. Importance of hydrodynamic considerations for underwater vehicle design. OCEANS 18, 1413–1422.
  • Polsenberg, A., Milano, M., Gsell, M., Fischer, K., 2005. Synthetic jet propulsion for small underwater vehicles. In: Proceedengs of the International Conference of Robotics and Automation. pp. 181–187.
  • Potter, M., Wiggert, D., Hondzo, M., 1998. Mecanica de Fluidos. Pretince Hall.
  • Prats, M., Ribas, D., Palomeras, N., Garcia, J. C., Nannen, V., Wirth, S., Fernandez, J. J., Beltran, J. P., Campos, R., Ridao, P., Sanz, P. J., Oliver, G., Carreras, M., Gracias, N., Marin, R., Ortiz, A., January 2012. Reconfigurable AUV for intervention missions: A case study on underwater object recovery. Journal of Intelligent Service Robotics 5 (1), 19–31.
  • Ridao, P., J., Y., Batlle, J., Sugihara, K., 2000. On auv control architecture. In: Proceedings of the International Conference on Intelligent Robots and Systems. pp. 855–860.
  • Ross, C., 2006. A conceptual design of an underwater vehicle. Ocean Engineering 33 (16), 2087–2104.
  • Rossi, C., Colorado, J., Coral, W., Barrientos, A., 2011. Bending continuous structures with smas: a novel robotic fish design. Bioinspiration & Biomimetics 6, 045005.
  • Saltaren, R., Aracil, R., Alvarez, C., Yime, E., Sabater, J., sep. 2007. Field and service applications - exploring deep sea by teleoperated robot - an underwater parallel robot with high navigation capabilities. Robotics Automation Magazine, IEEE 14 (3), 65–75.
  • SNAME, 1950. Nomenclature for treating the motion of a submerged body through a fluid. The Society of Naval Architects and Marine Engineers. Technical and Research bulletin No. 1-5.
  • Valavanis, K., Gracanin, D., Matijasevic, M., Kolluru, R., 1997. Control architectures for autonomous underwater vehicles. IEEE Control Systems 17 (6), 48–64.
  • van de Ven, P. W. J., Flanagan, C., Toal, D., Aug. 2005. Neural network control of underwater vehicles. Eng. Appl. Artif. Intell. 18 (5), 533–547.
  • Wang, W., Engelaar, R., Chen, X., Chase, J., 2009. The state-of-art of underwater vehicles - theories and applications. Mobile Robots - State of the Art in Land, Sea, Air, and Collaborative Missions, X.Q. Chen, Y.Q. Chen and J.G. Chase (Ed.), InTech.
  • Yime, E., 2008. Modelo matemático y control vectorial de robots submarinos de geometría variable. Ph.D. thesis, Univesidad Politécnica de Madrid, Madrid, España.
  • Yoerger, D., Cooke, J., J., S., 1990. The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering 15 (3), 167–178.
  • Yoerger, D., Slotine, J., 1985. Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering 10 (4), 462–470.
  • Yuh, J., 1990. A neural net controller for underwater robotic vehicles. IEEE Journal of Oceanic Engineering 15 (3), 161–166.
  • Yuh, J., 1994. Learning control of underwater robotic vehicles. IEEE Control System 14 (2), 39–46.
  • Yuh, J., January 2000. Design and control of autonomous underwater robots: A survey. Auton. Robots 8 (1), 7–24.
  • Yuh, J., Nie, J., Lee, C., 1999. Experimental study on adaptive control of underwater robots. In: Proceedings of the IEEE International Conference on Mechatronics and Automation. pp. 393–398.
  • Zhang, Y., Tian, J., Su, D., Wang, S., 2006. Research on the hierarchical supervisory control of underwater glider. In: Proceedigs of IROS 2006. pp. 5509 –5513.