Convergence of the relaxed Newton's method
- Argyros, I.K. 2
- Gutiérrez, J.M. 1
- Magreñán, Á.A. 1
- Romero, N. 1
-
1
Universidad de La Rioja
info
-
2
Cameron University
info
ISSN: 0304-9914
Año de publicación: 2014
Volumen: 51
Número: 1
Páginas: 137-162
Tipo: Artículo
Otras publicaciones en: Journal of the Korean Mathematical Society
Resumen
In this work we study the local and semilocal convergence of the relaxed Newton's method, that is Newton's method with a relaxation parameter 0 < λ < 2. We give a Kantorovich-like theorem that can be applied for operators defined between two Banach spaces. In fact, we obtain the recurrent sequence that majorizes the one given by the method and we characterize its convergence by a result that involves the relaxation parameter λ. We use a new technique that allows us on the one hand to generalize and on the other hand to extend the applicability of the result given initially by Kantorovich for λ = 1. © 2014 The Korean Mathematical Society.