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CONVERGENCE OF THE RELAXED NEWTON’S METHOD

Ioannis Konstantinos Argyros, José Manuel Gutiérrez,

Ángel Alberto Magreñán, and Natalia Romero

Abstract. In this work we study the local and semilocal convergence of
the relaxed Newton’s method, that is Newton’s method with a relaxation
parameter 0 < λ < 2. We give a Kantorovich-like theorem that can
be applied for operators defined between two Banach spaces. In fact,
we obtain the recurrent sequence that majorizes the one given by the
method and we characterize its convergence by a result that involves the
relaxation parameter λ. We use a new technique that allows us on the
one hand to generalize and on the other hand to extend the applicability
of the result given initially by Kantorovich for λ = 1.

1. Introduction

In many areas related to the applied sciences one confronts the problem of
solving a nonlinear equation of the form f(x) = 0. The solutions of these equa-
tions can rarely be found in closed form. That is why most solution methods
are iterative. There exist lots of iterative methods with different properties
that allow us to solve this kind of equations, but the most well-known and used
is the Newton’s method, which has the following form:

(1) xn+1 = xn − f(xn)

f ′(xn)
, n ≥ 0.

In the beginning, this method was constructed for functions defined on the
real line, but after the seminal works of Kantorovich [16], Newton’s method
was extended to general spaces with the aim of solving functional equations in
the form

(2) F (x) = 0,

where F : X → Y is a function defined between two Banach spaces (of [18],
[27], or [28] for more details). In this way, the method could be used to solve
different kind of problems such as systems of nonlinear equations, nonlinear
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integral equations, ordinary and partial differential equations or variational
problems.

In this context, the known as Newton-Kantorovich method has the following
form:

(3) xn+1 = xn − ΓnF (xn), n ≥ 0,

where Γn = F ′(xn)
−1 is the inverse of the Fréchet derivative of the nonlinear

operator F (x) at the point xn.
The study about convergence matter of iterative methods is usually based

on two types: semilocal and local convergence analysis. The semilocal matter
is, based on the information around an initial point, to give conditions ensuring
the convergence of the iterative method, while the local one is, based on the
information around a solution, to find estimates of the radii of convergence
balls.

In order to ensure that the method is well defined and that converges to
a solution of the equation (2), Kantorovich and other authors (see [16], [19],
[20]) give sufficient conditions on the starting point x0 and on the operator F .
The main convergence result for this method was given by Kantorovich in [16].
Here and in the rest of the paper, we denote

B(x0, R) = {x : ‖x− x0‖ < R}.
Theorem 1 (Kantorovich’s theorem). Let us assume that the operator F in-

troduced in (2) is defined and Fréchet differentiable in a ball B(x0, R). Let us

assume that the linear operator F ′(x0) is invertible and conditions

(4) ‖F ′(x0)
−1F (x0)‖ ≤ a,

(5) ‖F ′(x0)
−1[F ′(x) − F ′(y)]‖ ≤ b‖x− y‖, x, y ∈ B(x0, R),

hold. In addition, let us suppose,

h = ab < 1/2, u1 =
1−

√
1− 2h

b
≤ R.

Then, Newton-Kantorovich method (3) is well defined and it converges to a

solution x∗ of (2). In addition, x∗ is located in B(x0, u1) an it is the unique

solution of (2) in the ball B(x0, u2), where

u2 =
1 +

√
1− 2h

b
.

Finally, the rate of convergence is given by

‖x∗ − xn‖ ≤ a

h2n
(2h)2

n

, n ≥ 0.

That is, the order of convergence is quadratic.

We would like to emphasize the key role of the parameter h defined above in
Kantorovich’s theory. The previous result has been stated for values h < 1/2,
but Kantorovich theory can be applied for h ≤ 1/2. When h = 1/2, only the
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linear convergence can be guaranteed. In addition, in this case, u1 = u2, and
the solution x∗ is located and is unique in B(x0, u1).

Our main goal in this paper is to develop a Kantorovich-like theory for a
variant of Newton’s method that it is called relaxed Newton’s method :

(6) xn+1 = xn − λF ′(xn)
−1F (xn), n ≥ 0, 0 < λ < 2.

The main reason to consider this method is because a full Newton step may
not be suitable to ensure that convergence of the method is monotone, but
introducing the relaxing factor this problem disappears. Some questions about
the complex dynamics of this method have been considered in [14] or [17]. Note
also that method (6) is a special case of Inexact Newton’s method defined by:

(7) xn+1 = xn − F ′(xn)
−1F (xn) + yn,

where yn is a null residual sequence in X . In particular, if

yn = (1− λ)F ′(xn)
−1F (xn)

the Inexact Newton’s method reduces to method (6). There is a plethora of
convergence results for the Inexact Newton’s method (cf [2]-[6], [8]-[15], [17],
[18], [23], [24], [26], [29] and the references there in). Hence, the results for
Inexact Newton’s method can be specialized to provide convergence results
for method (6). However, we decided in this paper to employ a more direct
approach which leads to easier to verify sufficient convergence conditions under
simpler hypotheses.

In [8] we can find a semilocal convergence analysis of methods in the form (6)
but it is related to recurrent sequences and functional spaces.

The relevance of our study, compared with the classical Kantorovich theory,
is the inclusion of the relaxation parameter λ in the set of sufficient conditions
to guarantee the semilocal convergence of (6) to a solution of (2). To be more
precise, throughout this paper we assume that the operator F defined in (2) is
defined and Fréchet differentiable in a ball B(x0, R).

The paper is organized as follows. In Section 2 we study the local con-
vergence of the method under Lipschitz and center-Lipschitz conditions. In
Section 3 the semilocal convergence of the method is studied under only Lips-
chitz conditions and λ ∈ (0, 1). The semilocal convergence of the method under
center-Lipschitz and Lipschitz conditions for λ ∈ (0, 2) is given in Section 4. We
present an extended semilocal convergence analysis for method (6) in Section
5 containing a nondifferentiable term. Finally, Section 6 is devoted to some
examples and numerical experiments to illustrate the theoretical results given
in the previous sections.

2. Local convergence of the relaxed Newton’s method

In this section we will study the local convergence of the relaxed Newton’s
method under center-Lipschitz and Lipschitz conditions. We present the fol-
lowing result.
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Theorem 2. Let F : X → Y be Fréchet differentiable in the ball B(x∗, R) ⊆ X.

Assume that the following conditions hold:

(i) There exists a solution x∗ of F (x) = 0.
(ii) There exists Γ = F ′(x∗)−1.

(iii) ‖Γ[F ′(x) − F ′(y)]‖ ≤ b‖x− y‖, b > 0, x, y ∈ B(x∗, R).
(iv) ‖Γ[F ′(x) − F ′(x∗)]‖ ≤ β‖x− x∗‖, β > 0, x ∈ B(x∗, R).

(v) ρ = min{R, 2(1−|1−λ|)
b+(2+|1−λ|)β}, 0 < λ < 2.

Then, the sequence given by the relaxed Newton’s method (6) starting from

x0 ∈ B(x∗, ρ), remains in B(x∗, ρ) and converges to x∗.

Proof. We need to prove the following conditions:
(I) If x ∈ B(x∗, ρ), then

β‖x− x∗‖ ≤ βρ < 1,

by the choice of ρ given in (v). Hence,

‖I − ΓF ′(x)‖ ≤ β‖x− x∗‖ < 1.

By the Banach Lemma on inversion of operators ([7], [16], [19]-[22]) we can
ensure that there exists the inverse operator of ΓF ′(x) and

‖F ′(x)−1F ′(x∗)‖ ≤ 1

1− β‖x− x∗‖ .

(II) We have the Ostrowski decomposition:

F (x) = F (x) − F (x∗)− F ′(x∗)(x− x∗) + F ′(x∗)(x− x∗)

=

∫ x

x∗

[F ′(x) − F ′(x∗)] dx+ F ′(x∗)(x∗ − x)

=

∫ 1

0

[F ′(x∗ + t(x− x∗))− F ′(x∗)] (x − x∗)dt+ F ′(x∗)(x∗ − x).

By taking norms in the preceding identity and using (iv) we get that

‖ΓF (x)‖ ≤ β

2
‖x− x∗‖2 + ‖x− x∗‖.

We also have the following Ostrowski-type decomposition:

x∗ − xn+1

= x∗ − xn + λΓnF (xn)− ΓnF (xn) + ΓnF (xn)

= x∗ − xn + ΓnF (xn) + (λ− 1)ΓnF (xn)

= − Γn [F (x∗)− F (xn)− F ′(xn)(x
∗ − xn) + (1− λ)F (xn)]

= − Γn

[

∫ x∗

xn

[F ′(x)− F ′(xn)] dx+ (1− λ)F (xn)

]

= − Γn

[∫ 1

0

[F ′(xn + t(x∗ − xn))− F ′(xn)] (x
∗ − xn)dt+ (1− λ)F (xn)

]

.
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Then, by taking norms we get in turn that:

‖x∗ − xn+1‖

≤ ‖ΓnF
′(x∗)‖

[

b

2
‖x∗ − xn‖2 + (1− λ)‖ΓF (xn)‖

]

≤ 1

1− β‖x∗ − xn‖

[

b

2
‖x∗ − xn‖2 + (1 − λ)

(

β

2
‖x∗ − xn‖2 + ‖x∗ − xn‖

)]

≤ 1

1− β‖x∗ − xn‖

[(

b

2
+ β

(

1− λ

2

))

‖x∗ − xn‖+ (1− λ)

]

‖x∗ − xn‖.

Let an+1 = an

1−βan

((

|1−λ|
2 β + b

2

)

an + |1− λ|
)

. Then,

‖x∗ − xn‖ ≤ an∀n.

Let γ = β
b
and ǫn = βan:

ǫn+1 =
ǫn

1− ǫn

(

1
γ
+ |1− λ|

2
ǫn + |1− λ|

)

.

Using an induction process, we will prove that (ǫn) converges to 0. Let’s show
that ǫ1 < ǫ0:

ǫ1 =
ǫ0

1− ǫ0

(

1
γ
+ |1− λ|

2
ǫ0 + |1− λ|

)

< ǫ0

or

ǫ0 <
2(1− |1− λ|)
2 + 1

γ
+ |1− λ| ,

which is true by the choice of ρ. Supposing that ǫn < ǫn−1 ∀n ≤ k. Let’s
see that it remains valid for n = k + 1. It’s easy to see that ǫn < ǫn−1 and
1−ǫn > 1−ǫn−1. Moreover as 0 < λ < 2, 1

γ
+ |1−λ| > 0, so ǫk+1 < ǫk. Clearly

from the above proof and x0 ∈ B(x∗, ρ) it follows that xn ∈ B(x∗, ρ) ∀n ≥ 0
The proof is complete. �

Remark 1. Hypothesis (iv) is not additional to (iii), since (iii) always implies
(iv). We also have that

β ≤ b

and b
β
can be arbitrarily large. Indeed, let us consider as an example X = Y =

R, x∗ = 0 and define the function F on X by

F (x) = d0x− d1 sin(1) + d1 sin(e
d2x),

where d0, d1, d2 are given parameters. Then, it can easily be seen that for d2
sufficiently large and d1 sufficiently small, b/β can be arbitrarily large. Other
examples where β < b can be found in [7]-[9].
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If hypothesis (iv) is dropped, then the convergence radius can be defined by

ρ0 = min{R,
2(1− |1− λ|)
(3 + |1− λ|)b }.

Notice that

ρ0 ≤ ρ.

The preceding inequality can be strict if β < b and

2(1− |1− λ|)
(3 + |1− λ|)b < R.

If λ = 1 (Newton’s method case), then ρ, ρ0 reduce, respectively, to

ρA = min{R,
2

2β + b
}

and

ρTR
0 = min{R,

2

3b
}.

The radius ρA was given by Argyros [6]-[9], whereas ρTR was given indepen-
dently by Rheinboldt [19] and Traub [25]. Clearly we have again that

ρTR ≤ ρA.

The preceding inequality is strict if β < b.

3. Semilocal convergence under Lipschtiz conditions

In this section our main purpose is to study the semilocal convergence of the
relaxed Newton’s method defined in (6) by means of using similar techniques
as Kantorovich did for Newton’s method. First of all, we present the following
lemma.

Lemma 1. Let p(r) be the polynomial:

(8) p(r) =
b

2
r2 − r + a,

with a, b > 0, ab < 1/2, λ ∈ (0, 1) and let be r0 = 0. Then, the sequence given

by rn+1 = Nλ,p(rn) converges to

(9) r∗ =
1−

√
1− 2ab

b
,

where

(10) Nλ,p(rn) = rn − λ
p(rn)

p′(rn)
.
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Proof. We begin by proving that (rn) is an increasing sequence:

r1 = r0 − λ
p(r0)

p′(r0)
= λa > 0 = r0.

Let suppose that rn > rn−1, ∀n ≤ k − 1. We shall show that rn+1 > rn.
As p(r) > 0, p′(r) < 0, ∀r ∈ [0, r∗], we deduce that rn+1 > rn. So (rn) is an
increasing sequence. Secondly, using an induction process we see that r∗ is the
upper bound of the sequence (rn). Indeed, it’s immediate that:

r∗ − r0 = r∗ > 0.

Let’s suppose that r∗ − rk > 0. We shall prove that the preceding inequality is
true for prove that n = k + 1:

r∗ − rk+1 = Nλ,p(r
∗)−Nλ,p(rk).

Taking into account the mean value theorem we have that:

Nλ,p(r
∗)−Nλ,p(rk) = N ′

λ,p(ξ)(r
∗ − rk), ξ ∈ (rk, r

∗).

As r∗ − rk > 0, if N ′
λ,p(ξ) > 0 the proof is ended, but:

N ′
λ,p(ξ) = (1− λ) + λ

p(ξ)p′′(ξ)

p′(ξ)2
.

As p(z) > 0 and p′′(z) > 0, ∀ξ ∈ (0, r∗) and λ ∈ (0, 1) then N ′
λ,p(z) > 0.

Hence, (rn) is bounded and so (rn) converges to its unique least upper bound
r∗0 < r∗. Taking limits in (10), it’s clear that p(r∗0) = 0, then r∗0 = r∗. The
proof is complete. �

Using this lemma and majorizing sequences we present the following result:

Theorem 3. Let F : X → Y be an operator defined between two Banach

spaces X,Y , and Fréchet differentiable in the ball B(x0, R). Suppose that, the

following conditions are satisfied:

(i) There exists the inverse operator of F at the point x0, moreover we will

denote it by Γ0 = F ′(x0)
−1,

(ii) ‖Γ0F (x0)‖ ≤ a, a > 0,
(iii) ‖Γ0[F

′(x)− F ′(y)]‖ ≤ b‖x− y‖, b > 0, x, y ∈ B(x0, R),
(iv) h = ab < 1/2, and

(v) r∗ = 1−
√
1−2h
b

≤ R.

Then, the sequence defined by:






r0 = 0

rn+1 = rn − λ
p(rn)

p′(rn)
, n ≥ 0,

where p(r) is defined in (8), majorizes the sequence generated by the relaxed

Newton’s method. Moreover sequence (xn) converges to x∗ solution of F (x) = 0.
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Limit point x∗ is located in B(x0, r∗), where r∗ is defined in (9) and is unique

in B(x0, r
∗∗), where

(11) r∗∗ =
1 +

√
1− 2h

b
.

Proof. First of all taking into account that p′(r) = br − 1 we can define the
sequence (rn) as:

(12)







r0 = 0

rn+1 = rn − λ
b
2r

2
n − rn + a

brn − 1
, n ≥ 0.

Lemma 1 ensures that the sequence (rn) is increasing and converges to r∗. We
shall show that the following conditions are satisfied for every n ∈ N:

(In) ‖F ′(xn)
−1F ′(x0)‖ ≤ p′(r0)

p′(rn)
.

(IIn) ‖Γ0F (xn)‖ ≤ − p(rn)
p′(r0)

.

(IIIn) ‖xn+1 − xn‖ ≤ rn+1 − rn.

If n = 0, it’s easy to see that:

(I0) ‖Γ0Γ
−1
0 ‖ = 1 = p′(r0)

p′(r0)
.

(II0) ‖Γ0F (x0)‖ ≤ a = − p(r0)
p′(r0)

.

(III0) ‖x1 − x0‖ ≤ λ‖Γ0F (x0)‖ ≤ λa = r1 − r0.

Suppose that items (In)-(IIIn) are true for n ≤ k − 1. We must show that
these items are true for n = k. Taking into account that ∀x ∈ B(x0, r

∗) ⊆
B(x0, R) it’s clear that:

‖I − Γ0F
′(x)‖ ≤ ‖Γ0 [F

′(x)− F ′(x0)] ‖ ≤ b‖x− x0‖ < br∗ ≤ 1.

Consequently, by the Banach Lemma on inversion of operators:

‖F ′(x)−1F ′(x0)‖ ≤ 1

1− b‖x− x0‖
.

We also have:

‖xk − x0‖ ≤ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖ ≤ rk − r0 = rk < r∗,

so xk ∈ B(x0, r
∗). Now we consider the following Ostrowski-type decomposi-

tion:

F (xk+1)(13)

= F (xk+1)− λF (xk)− F ′(xk)(xk+1 − xk)− F (xk) + F (xk)

= F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk) + (1 − λ)F (xk)

=

∫ xk+1

xk

[F ′(x) − F ′(xk)] dx+ (1− λ)F (xk)

=

∫ 1

0

[F ′(xk + t(xk+1 − xk))− F ′(xk)] (xk+1 − xk)dt+ (1− λ)F (xk)
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and so:

‖Γ0F (xk+1)‖ ≤ b

2
‖xk+1 − xk‖2 + (1− λ)‖Γ0F (xk)‖.

Moreover, repeating the process:

p(rk+1) = p(rk+1)− λp(rk)− p′(rk)(rk+1 − rk)− p(rk) + p(rk)

= p(rk+1)− p(rk)− p′(rk)(rk+1 − rk) + (1− λ)p(rk)

=

∫ rk+1

rk

[p′(x) − p′(rk)] dx+ (1− λ)p(rk)

=

∫ rk+1

rk

b(x− rk)dx + (1− λ)p(rk)

=
b

2
(rk+1 − rk)

2 + (1− λ)p(rk).

Furthermore, we have that

(Ik) ‖F ′(xk)
−1F ′(x0)‖ ≤ 1

1− b‖xk − x0‖
≤ 1

1− brk
≤ − 1

p′(rk)
=

p′(r0)

p′(rk)
.

(IIk) ‖Γ0F (xk)‖ ≤ b

2
‖xk − xk−1‖2 + (1− λ)‖Γ0F (xk−1)‖

≤ b

2
(rk − rk−1)

2 − (1− λ)
p(rk−1)

p′(r0)

= − 1

p′(r0)

b

2
(rk − rk−1)

2 − (1− λ)
p(rk−1)

p′(r0)

= − 1

p′(r0)

[

b

2
(rk − rk−1)

2 + (1− λ)p(rk−1)

]

= − p(rk)

p′(r0)
.

(IIIk) ‖xk+1 − xk‖ ≤ λ‖ΓkF (xk)‖ ≤ λ‖ΓkF
′(x0)‖‖Γ0F (xk)‖

≤ λ

(

p′(r0)

p′(rk)

)(

− p(rk)

p′(r0)

)

= −λ
p(rk)

p′(rk)
= rk+1 − rk.

Now, to obtain the uniqueness region of the solution we assume that x̂ is a
solution located in the ball B(x0, r

∗∗), where r∗∗ is defined in (11). Then:

(14) 0 = Γ0 [F (x̂− F (x∗)] = W (x̂− x∗),

where W : X → X is the lineal operator defined by:

Wx =

[∫ 1

0

Γ0F
′(x∗ + t(x̂− x∗)) dt

]

x, x ∈ X.

As ‖x̂− x0‖ < r∗∗ and ‖x∗ − x0‖ ≤ r∗, then:

‖I −W‖ =

∥

∥

∥

∥

∫ 1

0

Γ0[F
′(x∗ + t(x̂− x∗))− F ′(x0)] dt

∥

∥

∥

∥

≤
∫ 1

0

b‖x∗ + t(x̂ − x∗)− x0‖ dt

≤
∫ 1

0

b ((1− t)‖x∗ − x0‖+ t‖x̂− x0‖) dt
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<
b

2
(r∗ + r∗∗) = 1.

Again by the Banach Lemma on inversion of operators (see [22]) there exists
the inverse operator of W . Finally, taking into account (14), we deduce that
x̂ = x∗. Hence, x∗ is the unique solution of F (x) = 0 in the ball B(x0, r

∗∗).
The proof of the theorem is complete. �

Furthermore, we present the following corollary.

Corollary 4. If h = 1/2 the convergence of the relaxed Newton’s method to

a root x∗ is also established. However, in this particular case, t∗∗ = t∗ = 1
b
.

That is the existence and uniqueness domain is the closed ball B(x0,
1
b
).

Once we have proven the previous semilocal convergence results we can
present the order of convergence of the method and error bounds. By the
Schröder theorem, we can obtain the convergence order of the sequence (12). As
rn+1 = Nλ,p(rn) where Nλ,p(rn) and p(r) defined in (10) and (8), respectively:

N ′
λ,p(x) = 1− λ(−Lp(x) + 1) = (1 − λ) + λLp(x).

so we can ensure that:

r∗ − rn+1 = Nλ,p(r
∗)−Nλ,p(rn)

= Nλ,p(r
∗)−

[

Nλ,p(r
∗) +N ′

λ,p(r
∗)(rn − r∗) +O(rn − r∗)2

]

= N ′
λ,p(r

∗)(r∗ − rn) +O(rn − r∗).

So linear convergence is proven, with asymptotic error constant N ′
λ,p(r

∗) =
(1−λ). Then the speed of convergence depends on the damping factor λ. This
speed is greater when λ is closer to 1 (see [21]).

Following a technique introduced by Ostrowski, we are going to present
upper and lower bounds for the error.

Theorem 5. Under the assumptions of Theorem 3. Then, we have the follow-

ing error bounds for the sequence (xn) given by the relaxed Newton’s method:

r∗(r∗∗ − r∗)(1 − λ)n

r∗∗ − r∗(1 − λ)n
≤ ‖x∗ − xn‖ ≤ r∗(r∗∗ − r∗)Qn

r∗∗ − r∗Qn
,

where Q = r∗+(1−λ)r∗∗

r∗∗+(1−λ)r∗ , r
∗ and r∗∗ are defined in (9) and (11), respectively.

Proof. Letting an = r∗ − rn and bn = r∗∗ − rn. Then:

an+1 = r∗ − rn+1 = r∗ − rn + λ
p(rn)

p′(rn)
= an − λ

anbn
an + bn

= an
an + (1 − λ)bn

an + bn
,

and

bn+1 = bn
bn + (1− λ)an

an + bn
.
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And so, it’s clear that

(15)
an+1

bn+1
=

an
bn

an + (1− λ)bn
bn + (1− λ)an

.

And so, we have the following:

an + (1− λ)bn
bn + (1− λ)an

=
r∗ − rn + (1− λ)(r∗∗ − rn)

r∗∗ − rn + (1− λ)(r∗ − rn)
=

r∗ + (1− λ)r∗∗ − rn(2− λ)

r∗∗ + (1− λ)r∗ − rn(2− λ)
.

Now letting f(x) = A−Bx
C−Bx

, and derivating:

f ′(x) =
−B(C −Bx) +B(A−Bx)

(C −Bx)2
=

B(A− C)

(C −Bx)2
.

In our particular case:

A− C = r∗ + (1 − λ)r∗∗ − r∗∗ − (1− λ)r∗

= (r∗ − r∗∗) + (1 − λ)(r∗∗ − r∗) = −λ(r∗∗ − r∗) < 0.

Then, as 0 ≤ rn < r∗:

f(0) ≥ f(rn) ≥ f(r∗).

Letting qn = an

bn
, we compute the upper bound as:

qn+1 ≤ qn
r∗ + (1− λ)r∗∗

r∗∗ + (1− λ)r∗

and setting Q = r∗+(1−λ)r∗∗

r∗∗+(1−λ)r∗ , we have:

qn+1 ≤ Qqn ≤ Q2qn−1 ≤ · · · ≤ Qn+1q0.

Taking into account, qn ≤ Qnq0, then:

an ≤ q0bnQ
n = q0(r

∗∗ − rn)Q
n = q0(r

∗∗ − rn)Q
n = q0(r

∗∗ − r∗ + an)Q
n.

In addition, we have [1− q0Q
n] an ≤ q0(r

∗∗ − r∗)Qn:

an ≤ q0(r
∗∗ − r∗)Qn

1− q0Qn
.

On the other hand as Q < 1, as r∗ + r∗∗ − λr∗∗ < r∗ − λr∗ + r∗∗, we can
conclude that:

an ≤ r∗(r∗∗ − r∗)Qn

r∗∗ − r∗Qn
.

Let’s compute the lower bound:

qn+1 ≥ qn
r∗ + (1− λ)r∗∗ − (2− λ)r∗

r∗∗ + (1− λ)r∗ − (2− λ)r∗
= qn

r∗(λ− 1) + (1 − λ)r∗∗

r∗∗ − r∗

= qn
(1 − λ)(r∗∗ − r∗)

r∗∗ − r∗
= (1− λ)qn ≥ · · · ≥ (1 − λ)n+1q0.

As qn ≥ (1− λ)nq0, then:

an ≥ (1−λ)nbnq0 = (1−λ)n(r∗∗ − r∗ + r∗ − rn)q0 = (1−λ)n(r∗∗ − r∗ + an)q0.
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Consequently as [1− q0(1− λ)n] an ≥ (r∗∗ − r∗)q0(1− λ)n:

an ≥ r∗(r∗∗ − r∗)(1− λ)n

r∗∗ − r∗(1− λ)n
.

This ends the proof. �

On the other hand,

Q = Q(λ) =
r∗ + (1− λ)r∗∗

r∗∗ + (1− λ)r∗
=

1− r∗∗

r∗+r∗∗
λ

1− r∗

r∗+r∗∗
λ
.

Letting A = r∗∗

r∗+r∗∗
and B = r∗

r∗+r∗∗
,

Q(λ) =
1− Aλ

1−Bλ
,

and so:

Q′(λ) =
B −A

(1−Bλ)2
,

and by the way of B − A = r∗−r∗∗

r∗+r∗∗
< 0, then function Q(λ) is decreasing, and

consequently the greater the damping factor is the faster method converges to
the solution.

Lastly, we have the following corollary:

Corollary 6. If λ = 1, from the equation (15) we have that
an+1

bn+1
=
(

an

bn

)2

and so the method has quadratic convergence (see [21]).

4. Semilocal convergence under center-Lipschitz and Lipschitz

conditions

In this section we present a different semilocal convergence analysis for the
relaxed Newton’s method based on the center-Lipschitz and Lipschitz condi-
tion. First, we need a result on a scalar sequence which will be shown to be
majorizing for {xn}. The convergence of the sequences in this section is estab-
lished for λ ∈ (0, 2). Notice that in Section 3 the convergence was established
for λ ∈ (0, 1).

Lemma 2. Let a > 0, β > 0, b > 0 and λ ∈ (0, 2) be given parameters. Set

M = |1− λ| and γ = β
b
. Define parameter α by

(16) α =
2(λ− 2Mγ)

λ+
√

λ2 + 8γ(λ− 2Mγ)
.

Suppose that for δ = abλγ the following conditions are true:

(17) 2Mγ < λ,

(18) (λ − 2)δ2 + 2(2 +M)δ − 2 < 0,
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(19) (
λ2

δ
− 4M − 4α+ 2αλ)δ2 + 2(

M

γ
λ+ 4α+ 2αM)δ + 4(M − α) ≤ 0,

and

(20) (M + α)(λ − 2(1− α))δ2 + 2(M + (3− 2α)α)δ + 2(1− α)(M − α) ≤ 0.

Then, scalar sequence {tn} defined by

(21)














t0 = 0, t1 = λa, t2 = t1 +
1

2(1− γbt1)
[λγb(t1 − t0) + 2M ](t1 − t0)

tn+2 = tn+1 +
1

2(1− γbtn+1)
[λb(tn+1 − tn) + 2M(1 + γbtn)](tn+1 − tn),

is well defined, increasing, bounded from above by

(22) t∗∗ =

[

1 +
λγb+ 2M

2(1− δ)(1− α)

]

λa

and converges to its unique least upper bound t∗ which satisfies:

(23) t∗ ∈ [tn, t
∗∗].

Moreover, the following estimates hold for each n = 1, 2, . . .

(24) 0 < tn+2 − tn+1 ≤ λγb+ 2M

2(1− δ)
αnn.

Proof. We first notice that α ∈ (0, 1) by (16) and (17) and M ∈ (0, 1) since
λ ∈ (0, 2). Let

(25) α0 =
λb(t2 − t1) + 2(γbt1 + 1)M

2(1− γbt2)
.

Using (18) and (21) we get that

(26) γbt2 < 1.

Moreover, by (16), (19) and (26) we deduce that

(27) 0 < α0 ≤ α.

Next we shall show using induction on the integer k = 1, 2, . . . that

(28) 0 <
λb(tk+1 − tk) + 2M(γbtk + 1)

2(1− γbt2)
≤ α.

Estimate (28) is true for k = 1 by (27). Then, using (21) for n = 1 and (27)
we obtain that

(29)

0 < t3 − t2 ≤ α(t2 − t1) ⇒ t3 ≤ t2 + α(t2 − t1)

= t2 + (1 + α)(t2 − t1)− (t2 − t1)

t3 ≤ t1 +
1− α2

1− α
(t2 − t1) < t∗∗.
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Suppose that (28) holds for each k = 1, 2, . . . ,m. Then, we get that

(30) 0 < tk+2 − tk+1 ≤ αk(t2 − t1)

and

(31) tk+2 ≤ t1 +
1− αk+1

1− α
(t2 − t1).

We must show that

(32) 0 ≤ λb(tk+2 − tk+1) + 2M(γbtk + 1)

2(1− γbtk+1)
≤ α.

Evidently, (32) holds, if

λb(tk+2 − tk+1) + 2(γbtk + 1)M ≤ 2α(1− γbtk+1)

or using (30) and (31)

(33)
λb(t2 − t1)α

k + 2Mγb 1−αk

1−α
(t2 − t1) + 2αγb 1−αk+1

1−α
(t2 − t1)

+2(δM + αδ +M − α) ≤ 0.

Estimate (33) motivates us to define recurrent functions fk on (0, 1) by

(34)
fk(t) = λb(t2 − t1)t

k + 2Mγb(t2 − t1)(1 + t+ · · ·+ tk−1)

+ 2γb(t2 − t1)t(1 + t+ · · · tk) + 2((Mγb+ tγb)λa+M − t).

We need a relationship between two consecutive function fk. Using (34) we get
that:

(35) fk+1(t) = fk+1(t)− fk(t) + fk(t) = fk(t) + g(t)(t2 − t1)t
k,

where

(36) g(t) = 2γbt2 + λbt+ (2Mγ − λ)b.

It follows from (17) and (36) that polynomial g has a unique positive root α
given by (16). In view of (34), estimate (33) holds if

(37) fk(α) ≤ 0.

Define function f∞ on (0, 1) by

(38) f∞(t) = lim
k→∞

fk(t).

We have from (35) and (36) that

(39) fk+1(α) = fk(α).

Then, it follows from (38) and (39) that (37) holds if

(40) f∞(α) ≤ 0.

By letting k → ∞ and by (20) we have that (40) is true, since

f∞(α) = 2

[

Mδ + αδ +M − α(1 − γ) +
Mγb

1− α
(t2 − t1) +

γbα

1− α
(t2 − t1)

]

≤ 0.
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The induction for (28) is complete. Hence, the sequence {tn} is increasing,
bounded from above by t∗∗ given in (22) and as such it converges to its unique
least upper bound t∗ which satisfies (23). The proof is complete. �

Remark 2. Quadratic inequalities (18)-(20) describe the smallness of a and can
be solved for a. However, we decided to leave them as uncluttered as possible,
since this representation is too long. It is simple algebra to show that in the
interesting case when λ = 1 (Newton’s method) reduce to (see [6]):

(41) h∗ = La ≤ 1/2,

where

L =
1

8
(4b0 +

√

b0b+ 8b20 +
√

b0b).

If b0 = b, then (41) reduces to the famous for its simplicity and clarity Newton-
Kantorovich hypothesis given in condition (iv) of Theorem 3. Notice that

(42) h ≤ 1/2 ⇒ h∗ ≤ 1/2

but not necessarily viceversa unless if b0 = 0 and h∗

h
→ 0 as b0

b
→ 0. Hence,

the applicability of Newton’s method has been extended.

Let us introduce the notation for fixed N = 0, 1, . . .

δN = γb(tN+1 − tN ).

Note that δ0 = δ. Next, we present the following weaker than Lemma 2 result
for the convergence of sequence {tn}. The proof simply follows from the proof
of Lemma 2 by replacing δ by δN .

Lemma 3. Suppose that (17) and (18)-(20) hold with δN replacing δ for δN
fixed N = 0, 1, . . .. Moreover, suppose that

0 < t1 < t2 < · · · < tN+1 <
1

γb
.

Then, scalar sequence {tn}, given in (21) is well defined, increasing, bounded

from above by

t∗∗N = tN−1 +
1

1− α
(tN − tN−1)

for N = 1, 2, . . . and converges to its unique least upper bound t∗N satisfying

tN+1 ≤ t∗N ≤ t∗∗N .

Moreover, the following estimates hold for each n = 0, 1, . . .

0 < tN+n − tN+n−1 ≤ αn−1(tN+1 − tN ).

Remark 3. If N = 0, Lemma 3 reduces to Lemma 2. Clearly Lemma 3 is
weaker than Lemma 2.

Next, we present the semilocal convergence of relaxed Newton’s method us-
ing a center-Lipschitz and a Lipschitz condition as well as {tn} as the majorizing
sequence for {xn}.
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Theorem 7. Let F : Ω ⊂ X → Y be Fréchet-differentiable. Suppose that there

exist x0 ∈ Ω, β > 0, b > 0, a > 0, λ 6= 0 such that there exists F ′(x0)
−1, in

addition

‖F ′(x0)
−1F (x0)‖ ≤ a,

‖F ′(x0)
−1(F ′(x) − F ′(x0))‖ ≤ β‖x− x0‖, ∀x ∈ Ω,

‖F ′(x0)
−1(F ′(x) − F ′(y))‖ ≤ b‖x− y‖, ∀x, y ∈ Ω,

B(x0, t
∗) ⊆ Ω

and hypothesis of Lemma 2 or Lemma 3 hold. Then, sequence {xn} generated

by the relaxed Newton’s method is well defined, remains in B(x0, t
∗) for each

n = 0, 1, . . . and converges to a solution x∗ ∈ B(x0, t
∗) of equation F (x) = 0.

Moreover, the following estimates hold for each n = 0, 1, . . .

‖xn+1 − xn‖ ≤ tn+1 − tn

and

‖xn − x∗‖ ≤ tn − t∗,

where sequence {tn} is given in (21). Furthermore, if there exists R ≥ t∗ such

that

B(x0, t
∗) ⊆ D

and

β(t∗ +R) < 2,

then, the solution x∗ is unique in B(x0, R).

Proof. The proof follows in an analogous way as the proof of Theorem 3 but
we use the Ostrowski decomposition

(43)

F ′(x0)
−1F (xn+1)

= F ′(x0)
−1

∫ 1

0

[F ′(xn + t(xn+1 − xn))− F ′(xn)] (xn+1 − xn)dt

+ (1 − 1

λ
)(I + F ′(x0)

−1(F ′(xn)− F ′(x0))(xn+1 − xn)

instead of (13). For the estimates on upper bounds on the norms

‖F ′(xn)
−1F ′(x0)‖

and the uniqueness part we use the more precise and cheaper center-Lipschitz
condition instead of the Lispchitz condition. �

Remark 4. Note that the definition of t2 (see (21)) is justified from the Os-
troswki representation (43) for n = 0, since then the center-Lipschitz (and not
the Lipschitz) condition is used to obtain the estimate on

‖F ′(x0)
−1‖

∫ 1

0

[F ′(x0 + t(x1 − x0))− F ′(x0)] dt‖ ≤ β

2
‖x1−x0‖2 ≤ β

2
(t1− t0)

2
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instead of

‖F ′(x0)
−1‖

∫ 1

0

[F ′(x0 + t(x1 − x0))− F ′(x0)] dt‖ ≤ b

2
‖x1 − x0‖2.

We complete this section with another result for the relaxed Newton’s meth-
od with simpler convergence conditions than in Theorem 7.

Theorem 8. Let F : Ω ⊂ X → Y be Fréchet-differentiable. Suppose that there

exist x0 ∈ Ω, β > 0, b > 0, a > 0, λ ∈ (0, 2) such that there exists F ′(x0)
−1,

in addition

‖F ′(x0)
−1F (x0)‖ ≤ a,

‖F ′(x0)
−1(F ′(x) − F ′(x0))‖ ≤ β‖x− x0‖, ∀x ∈ Ω,

‖F ′(x0)
−1(F ′(x) − F ′(y))‖ ≤ b‖x− y‖, ∀x, y ∈ Ω.

Moreover, suppose that

h1 = λabmax{λ, γ(1 +M)} ≤ 1

2
(1−M)2,

and

B(x0, s
∗) ⊆ Ω,

where M and γ are given in Lemma 2 and

s∗ =
1−M −

√

(1−M)2 − 2h1

σ
,

σ = bmax{λ, γ(1 +M)}.
Then, sequence {xn} generated by the relaxed Newton’s method is well defined,

remains in B(x0, s
∗) for all n ≥ 0 and converges to a solution x∗ ∈ B(x0, s

∗)
of equation F (x) = 0. Moreover the equation F (x) = 0, has a unique solution

x∗ ∈ S, where

(44) S =

{

B(x0, s
∗)
⋂

Ω if h1 = 1
2 (1−M)2,

B(x0, s
∗∗)
⋂

Ω if h1 < 1
2 (1−M)2,

and

s∗∗ =
1−M +

√

(1−M)2 − 2h1

σ
.

Furthermore, the following estimates hold for each n = 0, 1, . . .

(45) ‖xn+1 − xn‖ ≤ sn+1 − sn

and

(46) ‖xn − x∗‖ ≤ s∗ − sn,

where majorizing sequence {sn} is defined by

s0 = 0, sn+1 = sn +
f(sn)

g(sn)
,

where

f(t) =
σ

2
t2 − (1−M)t+ λa
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and

g(t) = 1− γbt.

Proof. It follows easily from 2σλa ≤ (1 −M)2 that the function f(t) has two
positive roots s∗ and s∗∗, s∗ ≤ s∗∗ and sn ≤ sn+1, so that the sequence {sn}
converges to s∗. As in Theorem 7 we obtain F ′(xn)

−1 ∈ L(Y,X),

‖F ′(xn)
−1F ′(x0)‖ ≤ 1

1− β‖xn − x0‖
≤ 1

1− βsn
≤ 1

1− bγsn
≤ 1

g(sn)

and

‖xn+1 − xn‖

≤ 1

g(sn)

[

λb

2
‖xn − xn−1‖+ (Mγb‖xn − x0‖+M)

]

‖xn − xn−1‖

≤ 1

g(sn)

(σ

2
(sn − sn−1) +M(γbsn−1 + 1)

)

(sn − sn−1)

=
1

g(sn)

(σ

2
(sn − sn−1)

2 +Mγb(sn − sn−1)sn−1

)

+
1

g(sn)
(M(sn − sn−1)− g(sn−1)(sn − sn−1) + f(sn−1))

=
1

g(sn)

(σ

2
s2n − (1 −M)sn + λa− (σ −Mγb− γb)sn−1(sn − sn−1)

)

≤ f(sn)

g(sn)
= sn+1 − sn.

Hence, we have for any n

‖xn+1 − xn‖ ≤ sn+1 − sn,

‖F ′(x0)
−1(F ′(xn+1)−F ′(x0))‖ ≤ β‖xn+1−x0‖ ≤ βsn+1 ≤ γbsn+1 ≤ γbs∗ < 1

and

‖xn − x0‖ ≤ sn ≤ s∗.

It follows that: xn ∈ B(x0, s
∗), sequence {xn} is complete in a Banach space

X and as such it converges to some x∗ ∈ B(x0, s
∗) (since B(x0, s

∗) is a closed
set). We also have that

‖F ′(x0)
−1F (xn)‖ ≤

(σ

2
(sn − sn−1) +M(γbsn + 1)

)

(sn − sn−1)

≤
(σ

2
(sn − sn−1) +M(γbs∗ + 1)

)

(sn − sn−1) → 0,

as n → ∞, so that F (x∗) = 0. Estimate (46) follows from (45) by using
standard majorizing techniques (see [6], [7]). Finally, for the uniqueness part
see the more general proof of Theorem 9 in Section 5. The proof of the theorem
is complete. �

Remark 5. The following two conditions are true.
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(a) Hypothesis h1 ≤ 1
2 (1−M)2 for 0 < λ ≤ 1 reduces to

h1 = ab
max{λ, γ(2− λ)}

λ
≤ 1

2

which is not weaker than h = ab ≤ 1/2. However, hypothesis h =
ab ≤ 1/2 cannot be used as the sufficient convergence condition for the
relaxed Newton’s method for λ ∈ (1, 2). In practice we shall test all
the “h” hypotheses introduced in this study to see if any of them is
satisfied.

(b) Results analogous to Lemma 3 can now follow by exchanging sequence
{tn} by {sn}.

5. Extended semilocal convergence

In this section we present a semilocal convergence result to solve a nonlinear
equation of the form:

(47) F (x) +G(x) = 0,

where F is defined in the introduction and G : Ω → Y is continuous. Then,
the relaxed Newton’s method for generating a sequence approximating x∗ is
defined by:

(48) xn+1 = xn − λF ′(xn)
−1(F (x) +G(x)), n ≥ 0.

Clearly if G = 0 on Ω, then method (48) reduces to method (6). In this
paper we used three different techniques for our semilocal convergence results.
However, for the method (48) we shall only use the technique of Theorem 9.
For brevity, we leave the analysis of the other two techniques to the motivated
reader.

Theorem 9. Let F : Ω ⊂ X → Y be Fréchet-differentiable and G : Ω → Y
be continuous. Suppose that there exist x0 ∈ Ω, β > 0, b > 0, a > 0, K ≥ 0,
λ ∈ (0, 2) such that there exists F ′(x0)

−1, in addition

‖F ′(x0)
−1(F (x0) +G(x0)‖ ≤ a,

‖F ′(x0)
−1(F ′(x) − F ′(x0))‖ ≤ β‖x− x0‖, ∀x ∈ Ω,

‖F ′(x0)
−1(F ′(x) − F ′(y))‖ ≤ b‖x− y‖, ∀x, y ∈ Ω,

‖F ′(x0)
−1(G(x) −G(y))‖ ≤ K‖x− y‖, ∀x, y ∈ Ω.

Moreover, suppose

µ = M + λK < 1,

h2 = λabmax{λ, γ(1 +M)} ≤ 1/2(1− µ)2,

and

B(x0, s
∗) ⊆ Ω,
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where M and γ are given in Lemma 2 and

s∗ =
1− µ−

√

(1 − µ)2 − 2h2

σ
σ = bmax{λ, γ(1 +M)}.

Then the sequence {xn} generated by the relaxed Newton’s method (48) is well

defined, remains in B(x0, s
∗) for all n ≥ 0 and converges to a solution x∗ ∈

B(x0, s
∗) of equation F (x)+G(x) = 0. Moreover, the equation F (x)+G(x) = 0

has a unique solution x∗ ∈ S, where

(49) S =

{

B(x0, s
∗)
⋂

Ω if h2 = 1
2 (1− µ)2,

B(x0, s
∗∗)
⋂

Ω if h2 < 1
2 (1− µ)2,

and

s∗∗ =
1− µ+

√

(1− µ)2 − 2h2

σ
.

Furthermore, the following estimates hold for each n = 0, 1, . . .

(50) ‖xn+1 − xn‖ ≤ sn+1 − sn

and

(51) ‖xn − x∗‖ ≤ s∗ − sn,

where majorizing sequence {sn} is defined by

s0 = 0, sn+1 = sn +
f(sn)

g(sn)
,

where

f(t) =
σ

2
t2 − (1− µ)t+ λa

and

g(t) = 1− γbt.

Proof. Using (48) we introduce as in Theorem 7 the Ostrowski decomposition
to obtain

F ′(x0)
−1(F (xn+1) +G(xn+1))

= F ′(x0)
−1

∫ 1

0

[F ′(xn + t(xn+1 − xn))− F ′(xn)] (xn+1 − xn)dt

+ (1− 1

λ
)
(

I + F ′(x0)
−1(F ′(xn)− F ′(x0)

)

(xn+1 − xn)

+ F ′(x0)
−1(G(xn+1)−G(xn)).

Then, following the proof of Theorem 8, we obtain in turn that

‖xn+1 − xn‖

≤ 1

g(sn)

[

λb

2
‖xn − xn−1‖+Mγb‖xn − x0‖+ µ

]

‖xn − xn−1‖
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≤ 1

g(sn)

(σ

2
(sn − sn−1)

2 +Mγbsn−1 + µ
)

(sn − sn−1)

≤ 1

g(sn)

(σ

2
(sn − sn−1)

2 +M(sn − sn−1)sn−1 + µ(sn − sn−1)
)

− 1

g(sn)
(g(sn−1)(sn − sn−1)− f(sn−1))

=
1

g(sn)

(σ

2
s2n − (1− µ)sn + λa− (σ −Mγb− γb)sn−1(sn − sn−1)

)

≤ f(sn)

g(sn)
= sn+1 − sn.

The rest follows as in Theorem 8 until

‖F ′(x0)
−1(F (xn)+G(xn))‖ ≤

(σ

2
(sn − sn−1)

2 +Mγbs∗ + µ
)

(sn−sn−1) → 0

as n → ∞. Hence, F (x∗) + G(x∗) = 0. Finally, in order for us to show the
uniqueness part, let us assume that F (y∗) +G(y∗) = 0 for some y∗ ∈ Ω. Using
(48) we obtain the identity

y∗ − xn = F ′(x0)
−1λ

∫ 1

0

[F ′(y∗ + t(xn − y∗))− F ′(xn)] (xn − y∗)dt

+ (1− λ)
(

I + F ′(x0)
−1(F ′(xn)− F ′(x0))

)

(xn − y∗)

+ λF ′(x0)
−1(G(xn)−G(y∗)).

Then, for n = 0 we get

‖y∗ − x1‖ ≤
(σ

2
‖y∗ − x0‖+ µ

)

‖y∗ − x0‖ = ϕ(ξ),

where ξ = ‖y∗−x0‖. We have that ‖y∗−x0‖ ≤ ‖y∗−x1‖+‖x1−x0‖ ≤ ϕ(ξ)+λa.
That if f(ξ) ≥ 0. Hence, y∗ ∈ B(x0, s

∗). Using induction we shall show that

‖y∗ − xk‖ ≤ s∗ − sn, n ≥ 0.

The preceding estimate is true for k = 0, since y∗ ∈ B(x0, s
∗). Let ‖y∗−xk‖ ≤

s∗ − sk. Then, we have in turn that

‖y∗ − xk‖

≤ 1

g(sk)

[σ

2
‖y∗ − xk‖+M‖xk − x0‖+ µ

]

‖y∗ − xk‖

≤ 1

g(sk)

[σ

2
s∗2 + µs∗ − (σ −Mγb)sk(s

∗ − sk)−
σ

2
s2k − µsk

]

=
1

g(sk)

[

s∗ − λa− (σ −Mγb)sk(s
∗ − sk)−

σ

2
s2k − µsk

]

= s∗ − sk +
1

g(sk)

[

−(s∗ − sk)g(sk) + s∗ − λa− σ

2
s2k − µsk

]

− 1

g(sk)
[(σ −Mγb)sk(s

∗ − sk)]
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= s∗ − sk −
1

g(sk)

[σ

2
s2k − (1− µ)sk + λa+ (σ −Mγb− γb)sk(s

∗ − sk)
]

≤ s∗ − sk+1.

That is, we have that limk→∞ xk = y∗. But, we showed limk→∞ xk = x∗.
Hence, we deduce that x∗ = y∗. The proof of the theorem is complete. �

6. Numerical examples and applications

Example 1. Extended semilocal convergence. Consider the following
nonlinear integral equation of mixed Hammerstein type

(52) x(s) = f(s) +

∫ B

A

G(s, t)α(x(t) − f(t))2 + β|x(t) − f(t)| dt, s ∈ [A,B],

where x, f ∈ C[A,B], α, β ∈ R and the kernel G is the Green function

G(s, t) =

{

(B−s)(t−A)
B−A

, t ≤ s,
(s−A)(B−t)

B−A
, s ≤ t.

To simplify the analysis we choose A = 0, B = 1, α = β = 1/2 and
f(s) = 0. To solve (52), we transform it into a finite dimensional problem by
using a process of discretization. For this, we approximate the integral that
appears in (52) by the Gauss-Legendre formula

∫ 1

0

h(t) dt ≃
8
∑

i=1

wih(ti),

where the nodes ti and the weights wi are known.
If we denote the approximation of x(ti) by xi (i = 1, 2, . . . , 8), then (52) is

equivalent to the following nonlinear system of equations

(53) xi =
1

2

8
∑

j=1

aij (x
2
j + |xj |), j = 1, 2, . . . , 8,

where

aij =

{

wjtj(1− ti) if j ≤ i,

wjti(1− tj) if j > i.

System (53) is now written as F (x) +G(x) = 0 where

F (x) ≡ x− 1

2
Avx, G(x) ≡ 1

2
Awx F : R8 −→ R

8,

where

x = (x1, x2, . . . , x8)
T , A = (aij)

8
i,j=1, vx = (x2

1, x
2
2, . . . , x

2
8)

T ,

wx = (|x1|, |x2|, . . . , |x8|)T .
Moreover, F ′(x) = I −AD(x), where D(x) = diag{x1, x2, . . . , x8}.

Choosing as starting point x0 = (1, 1, . . . , 1)T and the max-norm, we obtain
a = 1.13821 · · · , b = β = 0.140636 · · · , k = 0.070318 · · · . If we take for instance
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λ = 0.9 it follows µ = M + λk = 0.535159 · · · < 1 and h2 = 0.0400186 · · · .
In consequence, by Theorem 9, the relaxed Newton’s method with λ = 0.9
converges to the trivial solution x∗ = (0, 0, . . . , 0)T of system (53). The exis-

tence of the solution is guaranteed in B(x0, 1.36529 · · · ) and the uniqueness in
B(x0, 11.8558 · · · ).

Moreover, in Table 1 we can establish the following estimates of the error
‖xn − x∗‖ that show in the following table.

Table 1. Estimates of the error ‖xn − x∗‖ applying the re-
laxed Newton’s method with λ = 0.9 and λ = 1 (Newton’s
method), to solve system (53)

n λ = 0.9, ‖xn − x∗‖ λ = 1, ‖xn − x∗‖
1 3.409021 · · · × 10−1 2.270807 · · · × 10−1

2 6.788876 · · · × 10−2 2.332819 · · · × 10−2

3 1.240100 · · · × 10−2 2.069182 · · · × 10−3

4 2.221346 · · · × 10−3 1.803860 · · · × 10−4

5 3.964426 · · · × 10−4 1.570110 · · · × 10−5

6 7.0706150 · · · × 10−5 1.366465 · · · × 10−6

7 1.2609058 · · · × 10−5 1.189218 · · · × 10−7

8 2.2485316 · · · × 10−6 1.034962 · · · × 10−8

Example 2. Semilocal convergence under center-Lipschitz and Lips-

chitz conditions. In the following example, we consider the real function

(54) x3 − 0.49 = 0.

We take the starting point x0 = 1 and we consider the domain Ω = B(x0, 1).
In this case, we obtain

(55) a = 0.17,

(56) b = 3.02,

(57) β = 2.51

and

γ = 0.831126 · · · .
Notice that Kantorovich hypothesis h ≤ 0.5 is not satisfied. Now, taking λ =
0.99, we obtain that for δ1 = 0.160253 · · · , hypotheses of Lemma 3 hold. Hence,
conditions of convergence for the relaxed Newton’s method given in Theorem
7 are satisfied. So, relaxed Newton’s method starting form x0 ∈ B(x0, 1)
converges to the solution of (54).
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Example 3. Local convergence. Let X = Y = R
3, D = U(0, 1), x∗ =

(0, 0, 0) and define function F on D by

(58) F (x, y, z) = (ex − 1, y2 + y, z).

We have that for u = (x, y, z)

(59) F ′(u) =





ex 0 0
0 2y + 1 0
0 0 1



 .

Using the norm of the maximum of the rows and (58)–(59) we see that since
F ′(x∗) = diag{1, 1, 1}, we can define parameters

(60) b = e,

(61) β = 2

and

(62) ρ = min{1, 2(1− |1− λ|)
e+ (2 + |1− λ|)2}.

Then for each 0 < λ < 2, the relaxed Newton’s method (6) starting form
x0 ∈ B(x∗, ρ). Notice that the radii of this ball is greater or equal than the
one only using Lipschitz condition.
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Ángel Alberto Magreñán
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