Facultad de Empresa y Comunicación
Facultad
Ioannis K.
Argyros
Publications by the researcher in collaboration with Ioannis K. Argyros (124)
2023
-
Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields
Journal of Computational and Applied Mathematics, Vol. 426
2022
-
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Journal of Computational and Applied Mathematics, Vol. 404
2021
-
Ball comparison between frozen Potra and Schmidt–Schwetlick schemes with dynamical analysis
Computational and Mathematical Methods
2020
-
A multistep Steffensen-type method for solving nonlinear systems of equations
Mathematical Methods in the Applied Sciences
-
A new technique for studying the convergence of Newton’s solver with real life applications
Journal of Mathematical Chemistry, Vol. 58, Núm. 4, pp. 816-830
-
Convergence and dynamics of a higher-order method
Symmetry, Vol. 12, Núm. 3
-
Extending the applicability of Stirling's method
Mathematics, Vol. 8, Núm. 1
-
Extending the choice of starting points for Newton's method
Mathematical Methods in the Applied Sciences, Vol. 43, Núm. 14, pp. 8042-8050
-
New improvement of the domain of parameters for newton's method
Mathematics, Vol. 8, Núm. 1
-
Study of local convergence and dynamics of a king-like two-step method with applications
Mathematics, Vol. 8, Núm. 7
-
Weaker conditions for inexact mutitpoint Newton-like methods
Journal of Mathematical Chemistry, Vol. 58, Núm. 3, pp. 706-716
2019
-
Advances in the semilocal convergence of Newton's method with real-world applications
Mathematics, Vol. 7, Núm. 3
-
Different methods for solving STEM problems
Journal of Mathematical Chemistry, Vol. 57, Núm. 5, pp. 1268-1281
-
Extended convergence analysis of the newton-hermitian and skew-Hermitian splitting method
Symmetry, Vol. 11, Núm. 8
-
Extended local convergence for some inexact methods with applications
Journal of Mathematical Chemistry, Vol. 57, Núm. 5, pp. 1508-1523
-
Improved semi-local convergence of the Newton-HSS method for solving large systems of equations
Applied Mathematics Letters, Vol. 98, pp. 29-35
-
On a Bi-Parametric family of fourth order composite Newton-Jarratt methods for nonlinear systems
Mathematics, Vol. 7, Núm. 6
-
Study of a high order family: Local convergence and dynamics
Mathematics, Vol. 7, Núm. 3
-
Unified local convergence for Newton's method and uniqueness of the solution of equations under generalized conditions in a Banach space
Mathematics, Vol. 7, Núm. 5