Data set for a predictive model for Spain on the economic impact of the COVID-19 crisis
- Candel, Francisco Javier 1
- Viayna, Elisabet 2
- Callejo, Daniel 3
- Ramos Lobo, Raúl 4
- San Román Montero, Jesús 5
- Barreiro, Pablo 6
- Carretero, María Del Mar 7
- Kolipiński, Adam 3
- Canora, Jesús 7
- Zapatero, Antonio 7
- Runken, M. Chris 2
- 1 (Hospital Clínico San Carlos)
- 2 (Grífols)
-
3
IQVIA
info
IQVIA
Madrid, España
- 4 (Universitat de Barcelona)
- 5 (Universidad Rey Juan Carlos)
- 6 (Universidad Europea)
- 7 (Consejería de Sanidad, Comunidad de Madrid)
Editor: CORA.Repositori de Dades de Recerca
Año de publicación: 2021
Tipo: Dataset
Resumen
The global COVID-19 spread has forced countries to implement non-pharmacological interventions (NPI) to preserve health systems. Spain is one of the most severely impacted countries, both clinically and economically. In an effort to support policy decision-making, Candel et al.(2021) [https://dx.doi.org/10.2139/ssrn.3745801] have developed a modified Susceptible-Exposed-Infectious-Removed (SEIR) epidemiological model to simulate the pandemic evolution. Its output was used to populate an economic model to quantify healthcare costs and GDP variation, through a regression model which correlates NPI and GDP change from 42 countries. The dataset contains information on the main variables used in order to specify and estimate this predictive model.