Characterizing different loads with the same velocity loss percentage in the bench press throw exercise

  1. Adrián García-Valverde 1
  2. Diego Pastor 2
  3. Javier Raya-González 3
  4. Manuel Moya-Ramón 2
  1. 1 Faculty of Health Science; University Isabel I de Castilla. Burgos, Spain
  2. 2 Sport Research Center; Miguel Hernández University. Alicante. Spain
  3. 3 Faculty of Sport Sciences, University of Extremadura. Cáceres, Spain
Revista:
Retos: nuevas tendencias en educación física, deporte y recreación

ISSN: 1579-1726 1988-2041

Año de publicación: 2024

Número: 61

Páginas: 677-684

Tipo: Artículo

DOI: 10.47197/RETOS.V61.106268 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Retos: nuevas tendencias en educación física, deporte y recreación

Resumen

Velocity loss has been recognized as an effective fatigue index in resistance training. However, the physiological consequences of this fatigue should be described. Traditionally, researchers have debated the hormonal response to non-failure resistance training. Cortisol on salivary concentration was one of the hormones under study, which is linked to the inflammatory process from exercise. This study aimed to compare the acute salivary cortisol (Sal-C) response at different percentages of 1RM with fatigue standardized by a 10% velocity loss. An experimental, randomized, and counterbalanced activity was designed. Fifteen men took part in the study (they fasted for 12 hours before carrying out the test), performing 6 sets of bench press throw with different 1RM percentages (30% - 90% 1RM). Salivary Cortisol was collected before and after each test. Velocity loss was measured by a linear encoder. ANOVA and Effect Size were performed. Sal-C showed a significant decrease in all percentages and effect size was greater with low loads (1.61 high) than with high loads (0.95-1 moderate). Peak power was significantly higher between 40-70% of 1RM compared to other percentages (30-80% 1RM). The results of this research support the idea that velocity-based training sustains the dynamic equilibrium of organisms independently of intensity training. Moreover, untrained subjects could perform efficiently up to six sets at all percentages but with fewer repetitions at higher intensities, as this study shows that untrained subjects achieved 10% velocity loss under four repetitions.

Referencias bibliográficas

  • Ahtiainen, J. P., Pakarinen, A., Alen, M., Kraemer, W. J., & Häkkinen, K. (2005). Short vs. long rest period between the sets in hypertrophic resistance training: Influence on muscle strength, size, and hormonal adaptations in trained men. Journal of Strength and Conditioning Research, 19(3), 572–582. https://doi.org/10.1519/15604.1
  • Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Physiological Re-views, 88(1), 287–332. https://doi.org/10.1152/physrev.00015.2007
  • Azizbeigi, K., Azarbayjani, M. A., Atashak, S., & Stannard, S. R. (2015). Effect of moderate and high resistance training intensity on indices of inflammatory and oxidative stress. Research in Sports Medicine, 23(1), 73–87. https://doi.org/10.1080/15438627.2014.975807
  • Baker, D., Nance, S., & Moore, M. (2001). The load that maximizes the average mechanical power output during ex-plosive bench press throws in highly trained athletes. Journal of Strength and Conditioning Research, 15(1), 20–24. https://doi.org/10.1519/1533-4287(2001)015<0020:TLTMTA>2.0.CO;2
  • Becker, L., Semmlinger, L., & Rohleder, N. (2021). Resistance training as an acute stressor in healthy young men: asso-ciations with heart rate variability, alpha-amylase, and cortisol levels. Stress, 24(3), 318–330. https://doi.org/10.1080/10253890.2020.1799193
  • Bermejo, J. L., Valldecabres, R., Villarrasa-Sapiña, I., Monfort-Torres, G., Marco-Ahulló, A., & Ribeiro Do Couto, B. (2022). Increased cortisol levels caused by acute resistance physical exercise impair memory and learning ability. PeerJ, 10, e13000. https://doi.org/10.7717/PEERJ.13000/SUPP-1
  • Borgenvik, M., Apró, W., & Blomstrand, E. (2012). Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. American Journal of Physiology - En-docrinology and Metabolism, 302(5), E510–E521. https://doi.org/10.1152/ajpendo.00353.2011
  • Burd, N. A., Andrews, R. J., West, D. W., Little, J. P., Cochran, A. J., Hector, A. J., Cashaback, J. G., Gibala, M. J., Potvin, J. R., Baker, S. K., & Phillips, S. M. (2012). Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. Journal of Physiology, 590(2), 351–362. https://doi.org/10.1113/jphysiol.2011.221200
  • Cairns, S. P., Knicker, A. J., Thompson, M. W., & Sjøgaard, G. (2005). Evaluation of models used to study neuromus-cular fatigue. Exercise and Sport Sciences Reviews, 33(1), 9–16.
  • Crewther, B., Keogh, J., Cronin, J., & Cook, C. (2006). Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Medicine (Auckland, N.Z.), 36(3), 215–238. https://doi.org/10.2165/00007256-200636030-00004
  • Crewther, B. T., Al-Dujaili, E., Smail, N. F., Anastasova, S., Kilduff, L. P., & Cook, C. J. (2013). Monitoring salivary testosterone and cortisol concentrations across an international sports competition: Data comparison using two en-zyme immunoassays and two sample preparations. Clinical Biochemistry, 46(4–5), 354–358. https://doi.org/10.1016/j.clinbiochem.2012.11.019
  • Crewther, B. T., Lowe, T., Weatherby, R. P., Gill, N., & Keogh, J. (2009). Neuromuscular performance of elite rug-by union players and relationships with salivary hormones. Journal of Strength and Conditioning Research, 23(7), 2046–2053. https://doi.org/10.1519/JSC.0b013e3181b73c19
  • Crewther, B. T., Obmiński, Z., & Cook, C. J. (2018). Serum cortisol as a moderator of the relationship between se-rum testosterone and Olympic weightlifting performance in real and simulated competitions. Biology of Sport, 35(3), 215–221. https://doi.org/10.5114/biolsport.2018.74632
  • Cronin, J., McNair, P. J., & Marshall, R. N. (2001). Developing explosive power: A comparison of technique and training. Journal of Science and Medicine in Sport, 4(1), 59–70. https://doi.org/10.1016/S1440-2440(01)80008-6
  • Freeman, P. R., Hedges, L. V., & Olkin, I. (1986). Statistical Methods for Meta-Analysis. Biometrics, 42(2), 454-454. https://doi.org/10.2307/2531069
  • García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Gregory Haff, G. (2018). Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliabil-ity? Journal of Strength and Conditioning Research, 32(5), 1273–1279. https://doi.org/10.1519/JSC.0000000000001998
  • García-Ramos, A., Torrejón, A., Feriche, B., Morales-Artacho, A. J., Pérez-Castilla, A., Padial, P., & Haff, G. G. (2018). Prediction of the maximum number of repetitions and repetitions in reserve from barbell velocity. Interna-tional Journal of Sports Physiology and Performance, 13(3), 353–359. https://doi.org/10.1123/ijspp.2017-0302
  • Gatti, R., & De Palo, E. F. (2011). An update: Salivary hormones and physical exercise. Scandinavian Journal of Medicine and Science in Sports, 21(2), 157–169. https://doi.org/10.1111/j.1600-0838.2010.01252.x
  • González-Badillo, J. J., & Gorostiaga-Ayestarán, E. (2002). Fundamentos del entrenamiento de la fuerza: Aplicación al alto rendimiento deportivo. Inde.
  • González-Badillo, J. J., Marques, M. C., & Sánchez-Medina, L. (2011). The importance of movement velocity as a measure to control resistance training intensity. Journal of Human Kinetics, Special Issue, 15–19. https://doi.org/10.2478/v10078-011-0053-6
  • González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement Velocity as a Measure of Loading Intensity in Re-sistance Training. International Journal of Sports Medicine, 31(05), 347–352. https://doi.org/10.1055/s-0030-1248333
  • Guez-Rosell, D. R., Yanez-Garcia, J. M., Sanchez-Medina, L., Mora-Custodio, R., & Lez-Badillo, J. J. G. (2020). Rela-tionship between velocity loss and repetitions in reserve in the bench press and back squat exercises. Journal of Strength and Conditioning Research, 34(9), 2537–2547. https://doi.org/10.1519/JSC.0000000000002881
  • Hall, J. E., & Hall, M. E. (2020). Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences.
  • Hamdi, M. M., & Mutungi, G. (2010). Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres. Journal of Physiology, 588(3), 511–525. https://doi.org/10.1113/jphysiol.2009.182162
  • Hedges, L. V., & Pigott, T. D. (2004). The power of statistical tests for moderators in meta-analysis. Psychological Meth-ods, 9(4), 426–445. https://doi.org/10.1037/1082-989X.9.4.426
  • Hellhammer, D. H., Wüst, S., & Kudielka, B. M. (2009). Salivary cortisol as a biomarker in stress research. Psychoneu-roendocrinology, 34(2), 163–171. https://doi.org/10.1016/j.psyneuen.2008.10.026
  • Jones, D. A. (2010). Changes in the force-velocity relationship of fatigued muscle: implications for power production and possible causes. Journal of Physiology, 588(16), 2977–2986. https://doi.org/10.1113/jphysiol.2010.190934
  • Kraemer, W. J., & Mazzetti, S. A. (2003). Hormonal Mechanisms Related to the Expression of Muscular Strength and Power. In P. V. Komi (Ed.), Strength and Power in Sport (Second, pp. 73–95). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470757215.CH5
  • Legaz-Arrese, A., Reverter-masía, J., Munguía-Izquierdo, D., & Ceballos-Gurrola, O. (2007). An analysis of resistance training based on the maintenance of mechanical power. Journal of Sports Medicine and Physical Fitness, 47(4), 427–436.
  • Loturco, I., Kobal, R., Moraes, J. E., Kitamura, K., Cal Abad, C. C., Pereira, L. A., & Nakamura, F. Y. (2017). Pre-dicting the maximum dynamic strength in bench press: The high precision of the bar velocity approach. Journal of Strength and Conditioning Research, 31(4), 1127–1131. https://doi.org/10.1519/JSC.0000000000001670
  • Mangine, G. T., Hoffman, J. R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., Jajtner, A. R., Beyer, K. S., Boone, C. H., Miramonti, A. A., Wang, R., LaMonica, M. B., Fukuda, D. H., Ratamess, N. A., & Stout, J. R. (2015). The ef-fect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physi-ological Reports, 3(8). https://doi.org/10.14814/phy2.12472
  • McCaulley, G. O., McBride, J. M., Cormie, P., Hudson, M. B., Nuzzo, J. L., Quindry, J. C., & Travis Triplett, N. (2009). Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistane exercise. European Journal of Applied Physiology, 105(5), 695–704. https://doi.org/10.1007/s00421-008-0951-z
  • McGuigan, M. R., Egan, A. D., & Foster, C. (2004). Salivary cortisol responses and perceived exertion during high intensity and low intensity bouts of resistance exercise. Journal of Sports Science and Medicine, 3(1), 8–15.
  • McMillian, D. J., Moore, J. H., Hatler, B. S., & Taylor, D. C. (2006). Dynamic vs. static-stretching warm up: The ef-fect on power and agility performance. Journal of Strength and Conditioning Research, 20(3), 492–499. https://doi.org/10.1519/18205.1
  • Papacosta, E., & Nassis, G. P. (2011). Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. Journal of Science and Medicine in Sport, 14(5), 424–434. https://doi.org/10.1016/j.jsams.2011.03.004
  • Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yá-ñez-García, J. M., Morales-Alamo, D., Pérez-Suárez, I., Calbet, J. A. L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine and Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678
  • Rhea, M. R. (2004). Determining the Magnitude of Treatment Effects in Strength Training Research Through the Use of the Effect Size Matthew. Journal of Strength and Conditioning Research, 18(4), 918–920.
  • Rhen, T., & Cidlowski, J. A. (2005). Antiinflammatory action of glucocorticoids - New mechanisms for old drugs. New England Journal of Medicine, 353(16), 1711-1723+1658. https://doi.org/10.1056/NEJMra050541
  • Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during re-sistance training. Medicine and Science in Sports and Exercise, 43(9), 1725–1734. https://doi.org/10.1249/mss.0b013e318213f880
  • Sánchez-Medina, L., González-Badillo, J. J., Pérez, C. E., & Pallarés, J. G. (2014). Velocity- and power-load relation-ships of the bench pull vs bench press exercises. International Journal of Sports Medicine, 35(3), 209–216. https://doi.org/10.1055/s-0033-1351252
  • Sarabia, J. M., Fernandez-Fernandez, J., Juan-Recio, C., Hernández-Davó, H., Urbán, T., & Moya, M. (2015). Me-chanical, hormonal and psychological effects of a non-failure short-term strength training program in young tennis players. Journal of Human Kinetics, 45(1), 81–91. https://doi.org/10.1515/hukin-2015-0009
  • Sarabia, J. M., Moya-Ramón, M., Hernández-Davó, J. L., Fernandez-Fernandez, J., & Sabido, R. (2017). The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0186601
  • Soriano, M. A., Jiménez-Reyes, P., Rhea, M. R., & Marín, P. J. (2015). The optimal load for maximal power produc-tion during lower-body resistance exercises: a meta-analysis. Sports Medicine, 45(8), 1191–1205. https://doi.org/10.1007/s40279-015-0341-8
  • Stock, M. S., Beck, T. W., Defreitas, J. M., & Dillon, M. A. (2010). Relationships among peak power output, peak bar velocity, and mechanomyographic amplitude during the free-weight bench press exercise. Journal of Sports Sciences, 28(12), 1309–1317. https://doi.org/10.1080/02640414.2010.499440
  • Stokes, K. A., Gilbert, K. L., Hall, G. M., Andrews, R. C., & Thompson, D. (2013). Different responses of selected hormones to three types of exercise in young men. European Journal of Applied Physiology, 113(3), 775–783.
  • Trybulski, R., Gepfert, M., Gawel, D., Bichowska, M., Fostiak, K., Wojdala, G., Trybek, G., Krzysztofik, M., & Wilk, M. (2022). Impact of movement tempo on bar velocity and time under tension in resistance exercises with different external loads. Biology of Sport, 39(3), 547–554. https://doi.org/10.5114/biolsport.2022.106160
  • Viru, A. M., Hackney, A. C., Välja, E., Karelson, K., Janson, T., & Viru, M. (2001). Influence of prolonged continuous exercise on hormone responses to subsequent exercise in humans. European Journal of Applied Physiology, 85(6), 578–585. https://doi.org/10.1007/s004210100498
  • Walker, S., Häkkinen, K., Virtanen, R., Mane, S., Bachero-Mena, B., & Pareja-Blanco, F. (2022). Acute neuromuscu-lar and hormonal responses to 20 versus 40% velocity loss in males and females before and after 8 weeks of velocity-loss resistance training. Experimental Physiology, 107(9), 1046–1060. https://doi.org/10.1113/EP090371
  • Wing, S. S., & Goldberg, A. L. (1993). Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. The American Journal of Physiology, 264(4 Pt 1), E668–E676. https://doi.org/10.1152/AJPENDO.1993.264.4.E668