Del Microscopio a la MetrópolisLa influencia del Moho Limoso en el Diseño Urbano
- 1 Escuela de Ingeniería de Fuenlabrada, de la Universidad Rey Juan Carlos (Madrid)
ISSN: 1853-3523, 1668-0227
Año de publicación: 2024
Título del ejemplar: Aprendizaje Bioinspirado II. Nuevos lenguajes de la Arquitectura, el Diseño y el Urbanismo
Número: 220
Páginas: 79-89
Tipo: Artículo
Otras publicaciones en: Cuadernos del Centro de Estudios en Diseño y Comunicación. Ensayos
Resumen
In the context of urban planning, biology has emerged as an invaluable source of inspiration and generator of creative solutions to address complex problems. The influence of organisms such as birds, termites, ants and bees has been studied to address challenges inherent to the urban environment. In this line of research, the possibility of using the organic structure of the slime mould, Physarum polycephalum, as a model for designing and optimising urban networks and infrastructure has recently been explored. Despite its apparent simplicity as a single-celled organism without a central brain, the slime mould has evolved over millions of years to develop an astonishing dexterity in planning its tubular network, making it a relevant source of inspiration for architecture and urban planning. The central hypothesis of this research focuses on the idea that the organic structure of slime mould can provide solutions to improve the efficiency and resilience of urban networks. The main objective of this study is to unravel the underlying principles that guide the formation of slime mould tissues and apply them to the optimisation of urban environments. To achieve this, digital technologies and information systems will be used to develop models that emulate their growth. A key component of this research is the incorporation of attractor nodes, which will adjust according to population density and people flows, enabling the creation of smarter and more resilient urban networks. To demonstrate the viability of these concepts in practice, this article develops a specific model based on the Buenos Aires metro system, with the aim of improving its efficiency and sustainability. This innovative approach, which merges biology with architecture, represents a new frontier in the field of urban planning and offers significant applications in diverse urban contexts.
Referencias bibliográficas
- Citas Adamatzky, A. (Ed.). (2012). Bioevaluation of World Transport Networks. University of the West of England. https://doi.org/10.1142/8482.
- Dartnell, L. (2012). Matrix: Simulating the world Part II: cellular automata. +Plus Magazine. http://plus.maths.org/content/matrix-simulating-world-part-ii-cellular-automata.
- Duarte Muñoz, A., Pantrigo Fernández, J. J., & Gallego Carrillo, M. (2007). Metaheurísticas. Madrid: Editorial Dykinson.
- Fraile, M. (2012). El nuevo paradigma contemporáneo. Del Diseño Paramétrico a la Morfogénesis Digital. XXVI Jornadas de Investigación y VIII Encuentro Regional SI + PI. Buenos Aires: FADU. UBA.
- Fraile, M. (2019). Arquitectura biodigital: Hacia un nuevo paradigma en la arquitectura contemporánea. Buenos Aires: Diseño.
- Freiberger, M. (2012). Perfect buildings: the maths of modern architecture. +Plus Magazine. Recuperado de http://plus.maths.org/content/perfect-buildings-maths-modernarchitecture.
- García, D., Ramírez, J., Sandoval-Carrillo, S., & Tchernykh, A. (2018). Clasificación de los problemas de optimización de redes de transporte público. Progmat, 10, pp. 31-43. Recuperado de https://doi.org/10.30973/progmat/2018.10.1/5.
- Gunji, Y.-P., Shirakawa, T., Niizato, T., & Haruna, T. (2008). Minimal model of a cell connecting amoebic motion and adaptive transport networks. Journal of Theoretical Biology, 253, pp. 659-667. Recuperado de https://doi.org/10.1016/j.jtbi.2008.04.017.
- Irving, T. (2022, Enero 27). Using a ‘virtual slime mold’ to design a subway network less prone to disruption. Universidad de Toronto. Recuperado de https://phys.org/news/2022-01-virtual-slime-moldsubway-network.html.
- Jones, J. (2015). Modelling the Biological Behaviour of Physarum. En From Pattern Formation to Material Computation (pp. 61-89). Springer International Publishing. Recuperado de http://dx.doi.org/10.1007/978-3-319-16823-4_4.
- Kay, R., Mattacchione, A., Katrycz, C., et al. (2022). Stepwise slime mould growth as a template for urban design. Scientific Reports, 12, 1322. https://doi.org/10.1038/s41598-022-05439-w.
- Kievid, C. (2014). Swarm Architecture: Space is a Computation [Tesis de maestría]. Universidad Técnica de Delft, Delft.
- Kokkugia. (2014). Swarm Urbanism. Recuperado de http://www.kokkugia.com/swarmurbanism.
- Larrodé Pellicer, E., Gallego Navarro, J., & Fraile del Pozo, A. (2015, Abril 21). Optimización de redes de transporte. Recuperado de https://www.interempresas.net/Smart_Cities/Articulos/136034-Optimizacion-de-redes-de-transporte.html.
- Leach, N. (2009, Julio/Agosto). Swarm Urbanism. Power to the parametric. Architectural Design, 79(4), pp. 56-63.
- Menéndez Ramos, M. (2021). Análisis del ciclo vital del hongo plasmodial Physarum polycephalum [Trabajo de fin de grado]. Universidad de La Coruña, La Coruña.
- PETERS (2015). Plan Estratégico y Técnico para la Expansión de la Red de Subtes de Buenos Aires. Banco Interamericano de Desarrollo. Buenos Aires: Subte.
- Rodríguez López, M. (2023). Procesos de crecimiento eficiente en la naturaleza. El caso de Physarum Polycephalum y las redes de transporte. [Trabajo de fin de grado]. E.T.S. Arquitectura (UPM), Madrid.
- Tero, A., Kobayashi, R., Nakagaki, T. (2007). A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology, 244(4), pp. 553-564. Recuperado de https://doi.org/10.1016/j.jtbi.2006.07.015.
- United Nations. (2015). THE 17 GOALS - Sustainable Development Goals.