Dynamic grouping of vehicle trajectories
- Gary Reyes 1
- Laura Lanzarini 2
- Cesar Estrebou 2
- Aurelio Fernandez Bariviera 3
- 1 Universidad de Guayaquil, Ecuador
- 2 Universidad Nacional de La Plata, Argentina
- 3 Universitat Rovira i Virgili, Spain
ISSN: 1666-6038
Año de publicación: 2022
Volumen: 22
Número: 2
Tipo: Artículo
Otras publicaciones en: Journal of Computer Science and Technology
Resumen
El volumen de tráfico vehicular de las grandes ciudades se ha incrementado en los últimos años originando problemas de movilidad, por ello el análisis de los datos del flujo vehicular toma importancia para los investigadores. Los Sistemas Inteligentes de transportación realizan el monitoreo y control vehicular recolectando trayectorias GPS, información que brinda en tiempo real la ubicación geográfica de los vehículos. Su procesamiento por medio de técnicas de agrupamiento permite identificar patrones sobre el flujo vehicular. Este trabajo presenta una metodología capaz de analizar el flujo vehicular en un área dada, identificando los rangos de velocidades y manteniendo actualizado un mapa interactivo que facilita la identificación de zonas de posibles atascos. Los resultados obtenidos sobre tres conjuntos de datos de las ciudades de Guayaquil-Ecuador, Roma-Italia y Beijing-China son satisfactorios y representan claramente la velocidad de desplazamiento de los vehículos identificando de manera automática los rangos más representativos para cada instante de tiempo.
Referencias bibliográficas
- A. Jain, “Data clustering: 50 years beyond k-means. 2009,” Pattern Recognition Letters, 2009.
- T. S. Madhulatha, “An overview on clustering methods,” arXiv preprint arXiv:1205.1117, 2012.
- B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable k-means++,” 2012.
- H. F. Tork, “Spatio-temporal clustering methods classification,” in Doctoral Symposium on Informatics Engineering, vol. 1, pp. 199 209, Faculdade de Engenharia da Universidade do Porto Porto, Portugal, 2012.
- J. Han, M. Kamber, and A. K. Tung, “Spatial clustering methods in data mining,” Geographic data mining and knowledge discovery, pp. 188–217, 2001.
- B. M. Varghese, A. Unnikrishnan, and K. Jacob, “Spatial clustering algorithms-an overview,” Asian Journal of Computer Science and Information Technology, vol. 3, no. 1, pp. 1–8, 2013.
- J. D. Mazimpaka and S. Timpf, “Trajectory data mining: A review of methods and applications,” Journal of Spatial Information Science, vol. 2016, no. 13, pp. 61– 99, 2016.
- M. Y. Choong, R. K. Y. Chin, K. B. Yeo, and K. T. K. Teo, “Trajectory pattern mining via clustering based on similarity function for transportation surveillance,” International Journal of Simulation-Systems, Science & Technology, vol. 17, no. 34, pp. 19–1, 2016.
- J. Kim and H. S. Mahmassani, “Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories,” Transportation Research Procedia, vol. 9, pp. 164–184, 2015.
- J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-and-group framework,” in Proceedings of the 2007 ACM SIGMOD international conference on Management of data - SIGMOD ’07, p. 593, ACM Press, 2007.
- Y. Mao, H. Zhong, H. Qi, P. Ping, and X. Li, “An adaptive trajectory clustering method based on grid and density in mobile pattern analysis,” Sensors, vol. 17, p. 2013, Sep 2017.
- G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang, “A review of moving object trajectory clustering algorithms,” Artificial Intelligence Review, vol. 47, p. 123–144, Jan 2017.
- L. X. Liu, J. T. Song, B. Guan, Z. X. Wu, and K. J. He, “Tra-dbscan: A algorithm of clustering trajectories,” in Frontiers of Manufacturing and Design Science II, vol. 121 of Applied Mechanics and Materials, pp. 4875– 4879, Trans Tech Publications Ltd, 1 2012.
- M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96, pp. 226–231, 1996.
- G. Reyes-Zambrano, L. Lanzarini, W. Hasperue, and ´ A. F. Bariviera, “GPS trajectory clustering method for decision making on intelligent transportation systems,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5529–5535, 2020.
- Q. Yu, Y. Luo, C. Chen, and S. Chen, “Trajectory similarity clustering based on multi-feature distance measurement,” Applied Intelligence, pp. 2315–2338, 2019.
- T. Luo, X. Zheng, G. Xu, K. Fu, and W. Ren, “An improved dbscan algorithm to detect stops in individual trajectories,” ISPRS International Journal of GeoInformation, vol. 6, no. 3, 2017.
- N. Ferreira, J. T. Klosowski, C. Scheidegger, and C. Silva, “Vector field k-means: Clustering trajectories by fitting multiple vector fields,” 2012.
- H. Hu, G. Lee, J. H. Kim, and H. Shin, “Estimating Micro-Level On-Road Vehicle Emissions Using the KMeans Clustering Method with GPS Big Data,” Electronics, 2020.
- J. Lou and A. Cheng, “Behavior from Vehicle GPS / GNSS Data,” Sensors, 2020.
- B. Babcock and J. Widom, “Models and Issues in Data Stream Systems.” 2002.
- M. Garofalakis, J. Gehrke, and R. Rastogi, Data Stream Management. 2016.
- M. R. Ackermann, C. Lammersen, C. Sohler, K. Swierkot, and C. Raupach, “StreamKM++: A clustering Algorithm for Data Streams,” ACM Journal of Experimental Algorithmics, vol. 17, pp. 173–187, 2012.
- C. C. Aggarwal, Data Streams : An Overview and Scientific Applications. 2010.
- N. Barbosa Roa, L. Trave-Massuy ´ es, and V. H. ` Grisales-Palacio, “Dyclee: Dynamic clustering for tracking evolving environments,” Pattern Recognition, vol. 94, pp. 162–186, 2019.
- C. C. Aggarwal, P. S. Yu, J. Han, and J. Wang, “- a framework for clustering evolving data streams,” in Proceedings 2003 VLDB Conference (J.-C. Freytag, P. Lockemann, S. Abiteboul, M. Carey, P. Selinger, and A. Heuer, eds.), pp. 81–92, San Francisco: Morgan Kaufmann, 2003.
- G. Reyes, L. Lanzarini, C. Estrebou, and V. Maquilon, ´ CACIC 2021 XXVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION, vol. XXVII, p. 261–270. Universidad Nacional de Salta, 2021 ed.