Desarrollo de la empatía a través de la Inteligencia Artificial Socioemocional

  1. María Isabel Gómez-León 1
  1. 1 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

Revista:
Papeles del psicólogo

ISSN: 0214-7823 1886-1415

Año de publicación: 2022

Título del ejemplar: Conducta suicida en adolescentes. La disforia de género a debate

Volumen: 43

Número: 3

Páginas: 218-224

Tipo: Artículo

Otras publicaciones en: Papeles del psicólogo

Resumen

Se prevé que en un futuro próximo los robots estarán cada vez más involucrados en roles sociales, sin embargo, comprender cómo los estudiantes aprenden habilidades empáticas, y cómo la tecnología puede respaldar este proceso, es un área importante pero poco investigada. Este trabajo analiza los factores que contribuyen al desarrollo de la empatía desde la infancia temprana y las variables de la empatía robótica que podrían ayudar a favorecer este aprendizaje. Se ha encontrado que la inteligencia artificial socioemocional (IAS) ya ha logrado implementar con éxito algunos de los mecanismos humanos de la empatía que están presentes durante los primeros años de vida. El estado actual de la investigación en IAS está lejos de lograr una capacidad empática completa, pero puede aportar herramientas útiles para fomentar habilidades empáticas desde la infancia.

Referencias bibliográficas

  • Ali, S., Park, H., & Breazeal, C. (2021). A social robot’s influence on children’s figural creativity during gameplay. International Journal of Child-Computer Interaction, 28, 100234. https://doi.org/10.1016/j.ijcci.2020.100234
  • Banisetty, S. B., Rajamohan, V., Vega, F., & Feil-Seifer, D. (2021). A deep learning approach to Multi-Context Socially-Aware Navigation. 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), 2021, pp. 23-30. https://doi.org/10.1109/RO-MAN50785.2021.9515424.
  • Bartneck, C., & Forlizzi, J. (2004). A design-centred framework for social human-robot interaction. In RO-MAN 2004 : 13th IEEE International Workshop on Robot and Human Interactive Communication, September 20-22, 2004, Kurashiki (pp. 591-594). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ROMAN.2004.1374827
  • Bisquerra, R., & Alzina, S. (2017). Psicología positiva, educación emocional y el Programa Aulas Felices. Papeles del Psicólogo, 38(1), 58-65. https://doi.org/10.23923/pap.psicol2017.2822
  • Buyukgoz, S., Pandey, A. K., Chamoux, M., & Chetouani, M. (2021). Exploring behavioral creativity of a proactive robot. Frontiers in Robotics and AI, 8, 694177. https://doi.org/10.3389/frobt.2021.694177
  • Castellano, G., Leite, I., & Paiva, A. (2017). Detecting perceived quality of interaction with a robot using contextual features. Autonomous Robots, 41, 1245–1261. https://doi.org/10.1007/s10514-016-9592-y
  • Causo, A., Vo, G. T., Chen, I., & Yeo, S. H. (2016). Design of robots used as education companion and tutor. In Robotics and mechatronics (pp. 75- 84). Springer, Cham. https://doi.org/10.1007/978-3-319-22368-1_8
  • de Waal, F. B. (2012). The antiquity of empathy. Science (New York, N.Y.), 336(6083), 874-876. https://doi.org/10.1126/science.1220999
  • de Waal, F., & Preston, S. D. (2017). Mammalian empathy: Behavioural manifestations and neural basis. Nature Reviews Neuroscience, 18(8), 498–509. https://doi.org/10.1038/nrn.2017.72
  • Feng, S., Wang, X., Wang, Q., Fang, J., Wu, Y., Yi, L., & Wei, K. (2018). The uncanny valley effect in typically developing children and its absence in children with autism spectrum disorders. PloS one, 13(11), e0206343. https://doi.org/10.1371/journal.pone.0206343
  • Geangu, E., Benga, O., Stahl, D., & Striano, T. (2010). Contagious crying beyond the first days of life. Infant Behavior & Development, 33(3), 279–288. https://doi.org/10.1016/j.infbeh.2010.03.004
  • Gómez-León, M. I. (2020). Desarrollo de la alta capacidad durante la infancia temprana. Papeles del Psicólogo, 41(2),147-158. https://doi.org/10.23923/pap.psicol2020.2930
  • Goris, K., Saldien, J., Vanderborght, B., & Lefeber, D. (2011). Mechanical Design of the huggable Robot Probo. International Journal Humanoid Robotics, 8, 481-511. https://doi.org/10.1142/S0219843611002563
  • Grosse Wiesmann, C., Friederici, A. D., Singer, T., & Steinbeis, N. (2020). Two systems for thinking about others’ thoughts in the developing brain. Proceedings of the National Academy of Sciences of the United States of America, 117(12), 6928–6935. https://doi.org/10.1073/pnas.1916725117
  • Ishihara, H., Wu, B., & Asada, M. (2018). Identification and evaluation of the face system of a child android robot Affetto for surface motion design. Frontiers in Robotics and AI, 5, 119. https://doi.org/10.3389/frobt.2018.00119
  • Kahn, P. H., Jr, Kanda, T., Ishiguro, H., Freier, N. G., Severson, R. L., Gill, B. T., Ruckert, J. H., & Shen, S. (2012). “Robovie, you’ll have to go into the closet now”: Children’s social and moral relationships with a humanoid robot. Developmental Psychology, 48(2), 303–314. https://doi.org/10.1037/a0027033
  • Kanda, T., Sato, R., Saiwaki, N., & Ishiguro, H. (2007). A two-month field trial in an elementary school for long-term human-robot interaction. IEEE Transactions on Robotics, 23(5), 962–971. https://doi.org/10.1109/TRO.2007.904904
  • Kozima, H., Michalowski, M. P., & Nakagawa, C. (2009). Keepon. International Journal of social robotics, 1(1), 3-18. https://doi.org/10.1007/s12369-008-0009-8
  • Lewkowicz, D. J., & Ghazanfar, A. A. (2012). The development of the uncanny valley in infants. Developmental Psychobiology, 54(2), 124–132. https://doi.org/10.1002/dev.20583
  • Manzi, F., Peretti, G., Di Dio, C., Cangelosi, A., Itakura, S., Kanda, T.,Ishiguro, H., Massaro, D., & Marchetti, A. (2020). A robot is not worth another: Exploring children’s mental state attribution to different humanoid robots. Frontiers in Psychology, 11, 2011. https://doi.org/10.3389/fpsyg.2020.02011
  • McStay, A., & Rosner, G. (2021). Emotional artificial intelligence in children’s toys and devices: Ethics, governance and practical remedies. Big Data & Society. https://doi.org/10.1177/2053951721994877
  • Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley. IEEE Robotics and Automation Magazine, 19(2), 98–100. https://doi.org/10.1109/MRA.2012.2192811
  • Nitsch, V., & Popp, M. (2014). Emotions in robot psychology. Biological Cybernetics, 108(5), 621–629. https://doi.org/10.1007/S00422-014-0594-6
  • Pandey, A. K., Ali, M., & Alami, R. (2013). Towards a task-aware proactive sociable robot based on multi-state perspective-taking. International Journal of Social Robotics, 5, 215-236. https://doi.org/10.1007/s12369-013-0181-3
  • Park, S., & Whang, M. (2022). Empathy in human–robot interaction: Designing for social robots. International Journal of Environmental Research and Public Health, 19, 1889. https://doi.org/10.3390/ijerph19031889
  • Park, S., Kim, S. P., & Whang, M. (2021). Individual’s social perception of virtual avatars embodied with their habitual facial expressions and facial appearance. Sensors (Basel, Switzerland), 21(17), 5986. https://doi.org/10.3390/s21175986
  • Schiff, D. (2021). Out of the laboratory and into the classroom: the future of artificial intelligence in education. AI & society, 36(1), 331-348. https://doi.org/10.1007/s00146-020-01033-8
  • Serholt, S., Pareto, L., Ekström, S., & Ljungblad, S. (2020). Trouble and repair in child-robot interaction: A study of complex interactions with a robot Tutee in a primary school Classroom. Frontiers in Robotics and AI, 7, 46. https://doi.org/10.3389/frobt.2020.00046
  • Stevens, F., & Taber, K. (2021). The neuroscience of empathy and compassion in pro-social behavior. Neuropsychologia, 159, 107925. https://doi.org/10.1016/j.neuropsychologia.2021.107925
  • Tanaka, F., Cicourel, A., & Movellan, J. R. (2007). Socialization between toddlers and robots at an early childhood education center. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 17954–17958. https://doi.org/10.1073/pnas.0707769104
  • Tejwani, R., Kuo, Y., Shu, T., Katz, B., & Barbu, A. (2022). Social interactions as recursive MDPs. Proceedings of the 5th Conference on Robot Learning, in Proceedings of Machine Learning Research, 164, 949-958. https://proceedings.mlr.press/v164/tejwani22a.html.
  • Vircikova, M., Magyar, G., & Sincak, P. (2015). The affective loop: A tool for autonomous and adaptive emotional human-robot interaction. In Robot Intelligence Technology and Applications 3 (pp. 247-254). Springer, Cham. https://doi.org/10.1007/978-3-319-16841-8_23
  • Watanabe, A., Ogino, M., Asada, M. (2007). Mapping facial expression to internal states based on intuitive parenting. Journal of Robotics and Mechatronics, 19(3), 315–323. http://www.er.ams.eng.osaka-u.ac.jp/Paper/2007/Watanabe07b.pdf
  • Woo, H., LeTendre, G. K., Pham-Shouse, T., & Xiong, Y. (2021). The use of social robots in classrooms: A review of field-based studies. Educational Research Review, 33, 100388. https://doi.org/10.1016/j.edurev.2021.100388
  • Wood, L. J., Dautenhahn, K., Rainer, A., Robins, B., Lehmann, H., & Syrdal, D. S. (2013). Robot-mediated interviews-how effective is a humanoid robot as a tool for interviewing young children?. PloS one, 8(3), e59448. https://doi.org/10.1371/journal.pone.0059448
  • Yohanan, S., MacLean, K. E. (2012). The role of affective touch in humanrobot interaction: Human intent and expectations in touching the haptic creature. International Journal of Social Robotics, 4, 163–180. https://doi.org/10.1007/s12369-011-0126-7