Using the Statistical Machine Learning Models ARIMA and SARIMA to Measure the Impact of Covid-19 on Official Provincial Sales of Cigarettes in Spain

  1. Andoni Andueza 1
  2. Miguel Ángel Del Arco-Osuna 1
  3. Bernat Fornés 1
  4. Rubén González-Crespo 1
  5. Juan Manuel Martín-Álvarez 1
  1. 1 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

Revue:
IJIMAI

ISSN: 1989-1660

Année de publication: 2023

Titre de la publication: Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

Volumen: 8

Número: 1

Pages: 73-87

Type: Article

DOI: 10.9781/IJIMAI.2023.02.010 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

D'autres publications dans: IJIMAI

Objectifs de Développement Durable

Résumé

From a public health perspective, tobacco use is addictive by nature and triggers several cancers, cardiovascular and respiratory diseases, reproductive disorders, and many other adverse health effects leading to many deaths. In this context, the need to eradicate tobacco-related health problems and the increasingly complex environments of tobacco research require sophisticated analytical methods to handle large amounts of data and perform highly specialized tasks. In this study, time series models are used: autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) to forecast the impact of COVID-19 on sales of cigarette in Spanish provinces. To find the optimal solution, initial combinations of model parameters automatically selected the ARIMA model, followed by finding the optimized model parameters based on the best fit between the predictions and the test data. The analytical tools Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) were used to assess the reliability of the models. The evaluation metrics that are used as criteria to select the best model are: mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean percentage error (MPE), mean error (ME) and mean absolute standardized error (MASE). The results show that the national average impact is slight. However, in border provinces with France or with a high influx of tourists, a strong impact of COVID-19 on tobacco sales has been observed. In addition, the least impact has been observed in border provinces with Gibraltar. Policymakers need to make the right decisions about the tobacco price differentials that are observed between neighboring European countries when there is constant and abundant cross-border human transit. To keep smoking under control, all countries must make harmonized decisions.

Références bibliographiques

  • I. Papanicolas,L.R. Woskie and A.K. Jha, “Health care spending in the United States and other high-income countries”. Jama, vol. 319, no. 10, pp. 1024-1039, 2018, doi: 10.1001/jama.2018.1150.
  • P. Cadahia, A. Golpe, J.M. Martín-Álvarez and E. Asensio, “Measuring anomalies in cigarette sales using official data from Spanish provinces: Are the anomalies detected by the Empty Pack Surveys (EPSs) used by Transnational Tobacco Companies (TTCs) the only anomalies?”. Tobacco Induced Diseases, vol. 19, no. 98, 2021, doi: 10.18332/tid/143321.
  • A. Almeida, A. Golpe and J.M. Martín-Álvarez, “A spatial analysis of the Spanish tobacco consumption distribution: Are there any consumption clusters?”. Public Health, vol. 186, 2020, doi: 10.1016/j.puhe.2020.06.040.
  • J.M. Martín-Álvarez, A. Golpe, J. Iglesias and R. Ingelmo, “Price and income elasticities of demand for cigarette consumption: what is the association of price and economic activity with cigarette consumption in Spain from 1957 to 2016?”, Public Health, vol. 185, 275-282, 2020, doi: 10.1016/j.puhe.2020.05.059.
  • J.M. Martín-Álvarez, A. Almeida, A. Galiano, A. and A. Golpe, “Asymmetric behavior of tobacco consumption in Spain across the business cycle: a long-term regional analysis”, International Journal of Health Economics and Management, vol. 20, 391-421, 2020, doi: 10.1007/ s10754-020-09286-y.
  • J.M. Martín-Álvarez., A. Almeida, A. Golpe, and J.C. Vides, “The influence of cigarette price on the cigarette consumption in Spain: a Logarithmic Mean Divisia Index analysis from 1957 to 2018”, Revista Espanola de Salud Publica, vol. 95, 2021, e202102026.
  • A. Almeida, A. Golpe, J. Iglesias and J.M. Martín-Álvarez, “The price elasticity of cigarettes: new evidence from Spanish regions, 2002–2016”, Nicotine and Tobacco Research, vol. 23, no. 1, 48-56, 2021, doi: 10.1093/ ntr/ntaa131.
  • R. Fu, A. Kundu, N. Mitsakakis, T. Elton-Marshall, W. Wang, S. Hill and M.O. Chaiton, “Machine learning applications in tobacco research: a scoping review”. Tobacco Control, vol. 32, no. 1, pp. 99-109, 2023, doi: 10.1136/tobaccocontrol-2020-056438.
  • K.P., Murphy, “Machine learning: a probabilistic perspective”. MIT press, 2012.
  • A.L. Beam and I.S. Kohane, “Big data and machine learning in health care”. Jama, vol. 319, no. 13, pp. 1317-1318, 2018, doi: 10.1001/jama.2017.18391.
  • T. Hastie, R. Tibshirani and J.H. Friedman, “The elements of statistical learning: data mining, inference, and prediction”. Springer New York, vol. 2, pp. 1-758, 2009, doi: 10.1007/978-0-387-21606-5.
  • J.M. Reps, P.R. Rijnbeek and P.B. Ryan, “Supplementing claims data analysis using self-reported data to develop a probabilistic phenotype model for current smoking status”. Journal of Biomedical Informatics, vol. 97, pp. 103264, 2019, doi: 10.1016/j.jbi.2019.103264.
  • P. Mamoshina, K. Kochetov, F. Cortese, A. Kovalchuk, A. Aliper, E. Putin and A. Zhavoronkov, “Blood biochemistry analysis to detect smoking status and quantify accelerated aging in smokers”. Scientific Reports, vol. 9, no. 1, pp. 1-10, 2019, doi: 10.1038/s41598-018-35704-w.
  • S. Huda, J. Yearwood and R. Borland, “Cluster based rule discovery model for enhancement of government’s tobacco control strategy”. 4th International Conference on Network and System Security IEEE, pp. 383- 390, 2010, doi:10.1109/NSS.2010.14.
  • N. Kim, D.E. McCarthy, W.Y. Loh, J.W. Cook, M.E. Piper, T.R. Schlam and T.B. Baker, “Predictors of adherence to nicotine replacement therapy: Machine learning evidence that perceived need predicts medication use”. Drug and Alcohol Dependence, vol. 205, pp. 107668, 2019, doi: 10.1016/j. drugalcdep.2019.107668
  • A. Dumortier, E. Beckjord, S. Shiffman and E. Sejdić, “Classifying smoking urges via machine learning”. Computer Methods and Programs in Biomedicine, vol. 137, pp. 203-213, 2016, doi: 10.1016/j.cmpb.2016.09.016.
  • L.N. Coughlin, A.N. Tegge, C.E. Sheffer and W.K. Bickel, “A machinelearning approach to predicting smoking cessation treatment outcomes”. Nicotine and Tobacco Research, vol. 22, no. 3, pp. 415-422, 2020, doi: 10.1093/ntr/nty259.
  • K. Davagdorj, J.S. Lee, K.H. Park and K.H. Ryu, “A machine-learning approach for predicting success in smoking cessation intervention”. 10th International Conference on Awareness Science and Technology IEEE, pp. 1-6, 2019, doi: 10.1109/ICAwST.2019.8923252.
  • A. Singh and H. Katyan, “Classification of nicotine-dependent users in India: a decision-tree approach”. Journal of Public Health, vol. 27, no. 4, pp. 453-459, 2019, doi: 10.1007/s10389-018-0973-x.
  • L. Clancy, S. Gallus, J. Leung and C.O. Egbe, “Tobacco and COVID-19: Understanding the science and policy implications”. Tobacco Induced Diseases, vol. 18., 2020, doi: 10.18332/tid/131035.
  • Y. Saloojee and A. Mathee, “COVID-19 and a temporary ban on tobacco sales in South Africa: impact on smoking cessation”. Tobacco Control, vol. 31, no. 2, pp. 207-210, 2022, doi: 10.1136/tobaccocontrol-2020-056293.
  • B.P. Lee, J.L. Dodge, A. Leventhal, N.A. Terrault, “Retail alcohol and tobacco sales during COVID-19”. Annals of internal medicine, vol. 174, no. 7, pp. 1027-1029, 2021, doi: 10.7326/M20-7271.
  • D. Yach, “Tobacco use patterns in five countries during the COVID-19 lockdown”. Nicotine & Tobacco Research, vol. 22, no. 9, pp. 1671-1672, 2020, doi: 10.1093/ntr/ntaa097.
  • P. Driezen, K.A. Kasza, S. Gravely, M.E. Thompson, G.T. Fong, K.M. Cummings and A. Hyland, “Was COVID-19 associated with increased cigarette purchasing, consumption, and smoking at home among US smokers in early 2020? Findings from the US arm of the International Tobacco Control (ITC) Four Country Smoking and Vaping Survey”. Addictive Behaviors, vol. 129, pp. 107276, 2022, doi: 10.1016/j. addbeh.2022.107276.
  • S. Asare, A. Majmundar, F. Islami, P. Bandi, S. Fedewa, L.J. Westmaas and N. Nargis, “Changes in cigarette sales in the United States during the COVID-19 pandemic”. Annals of Internal Medicine, vol. 175, no. 1, pp. 141-143, 2022, doi: 10.7326/M21-3350.
  • J. Kim and S. Lee, “Impact of the COVID-19 pandemic on tobacco sales and national smoking cessation services in Korea”. International Journal of Environmental Research and Public Health, vol. 19, no. 9, pp. 5000, 2022, doi: 10.3390/ijerph19095000.
  • I.B., Ahluwalia, M. Myers and J.E. Cohen, “COVID-19 pandemic: an opportunity for tobacco use cessation”. The Lancet Public Health, vol. 5, no. 11, pp. e577, 2020, doi: 10.1016/S2468-2667(20)30236-X.
  • M. Hefler and C.E. Gartner, “The tobacco industry in the time of COVID-19: time to shut it down?”. Tobacco Control, vol. 29, no. 3, pp. 245- 246, 2020, doi: 10.1136/tobaccocontrol-2020-055807.
  • T.K. Burki, “Tobacco industry capitalises on the COVID-19 pandemic”. The Lancet Respiratory Medicine, vol. 9, no. 10, pp. 1097-1098, 2021, doi: 10.1016/S2213-2600(21)00361-1.
  • R. Álvarez, N. Vicente, L. Polo, P. Ríos, P. Ferrández, A.M. Furió, O Monteagudo, R. Dalmau, J. Doncel, S. Justo, J. Rey, C. González and C. Gómez-Chacón, “Tobacco use in Spain during COVID-19 lockdown: an evaluation through social media”. Revista Espanola de Salud Publica, vol. 95, 2021, PMID: 33724261.
  • E.P. Esplá, C.C. Faus, A.J. Baldó, I.B. Enrique and E.C. Vives, “COVID-19 and smoking: an opportunity to quit”. Archivos de Bronconeumologia, vol. 57, no. 12, pp. 784, 2021, doi: 10.1016/j.arbr.2021.10.009.
  • J.M. Suelves, B. Gomez-Zuniga and M. Armayones, “Changes in smoking behaviour due to the COVID-19 pandemic in Spain”. Tobacco Prevention & Cessation, vol. 7(Supplement), no. 55, 2021, doi: 10.18332/tpc/143664.
  • A. Estévez-Danta, L. Bijlsma, R. Capela, R. Cela, A. Celma, F. Hernández and J.B. Quintana, “Use of illicit drugs, alcohol and tobacco in Spain and Portugal during the COVID-19 crisis in 2020 as measured by wastewaterbased epidemiology”. Science of the Total Environment, vol. 836, pp. 155697, 2022, doi:10.1016/j.scitotenv.2022.155697.
  • C. Martínez-Cao, L. de La Fuente-Tomas, I. Menéndez-Miranda, A. Velasco, P. Zurrón-Madera, L. García-Álvarez and J. Bobes, “Factors associated with alcohol and tobacco consumption as a coping strategy to deal with the coronavirus disease (COVID-19) pandemic and lockdown in Spain”. Addictive Behaviors, vol. 121, pp. 107003, 2021, doi: 10.1016/j. addbeh.2021.107003.
  • J.C. Vázquez, J. C. and D. Redolar-Ripoll, “COVID-19 outbreak impact in Spain: A role for tobacco smoking?”. Tobacco Induced Diseases, vol. 18, no. 30, 2020, doi: 10.18332/tid/120005.
  • J.C. Vázquez and D. Redolar-Ripoll,”Epidemiological data from the COVID-19 outbreak in Spain for the promotion of tobacco smoking cessation policies”. Tobacco Use Insights, vol. 13, pp. 1179173X20924028, 2020, doi: 10.1177/1179173X20924028.
  • O. Parra, C. Suárez and L. Martínez, “Análisis comparativo de las técnicas de series de tiempo ARIMA y ANFIS para pronosticar tráfico Wimax”, Ingeniería, vol. 12, no. 2, 73-79, 2007, doi: 10.14483/23448393.2166.
  • R.A. Yaffee, and M. McGee, “An introduction to time series analysis and forecasting: with applications of SAS® and SPSS®”. Elsevier, 2000.
  • E.P. Box George, M. Jenkins Gwilym, C. Reinsel Gregory and M. Ljung Greta, “Time series analysis: forecasting and control”. San Francisco: Holden Bay, 1979.
  • M.S.M. Kasihmuddin, M.A. Mansor, S. A. Alzaeemi and S. Sathasivam, “Satisfiability logic analysis via radial basis function neural network with artificial bee colony algorithm”. International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 6, 2021, doi: 10.9781/ ijimai.2020.06.002.
  • A. Gupta, K. Ghanshala and R.C. Joshi, “Machine Learning Classifier Approach with Gaussian Process, Ensemble boosted Trees, SVM, and Linear Regression for 5G Signal Coverage Mapping”. International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, No 6, 2021, doi: 10.9781/ijimai.2021.03.004.
  • R Core Team, “R: A language and environment for statistical computing”. R Foundation for Statistical Computing, Vienna, Austria, 2021, https:// www.R-project.org/
  • RStudio Team. “RStudio: Integrated Development for R”. RStudio, PBC, Boston, MA URL, 2020, http://www.rstudio.com/
  • H. Wickham, M. Averick, J. Bryan, W. Chang, L.D. McGowan, R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T.L. Pedersen, E. Miller, S.M. Bache, K. Müller, J. Ooms, D. Robinson D, D.P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, H. Yutani, “Welcome to the tidyverse.” Journal of Open Source Software, vol. 4, no. 43, pp. 1686, 2019, doi: 10.21105/joss.01686.
  • R.J. Hyndman, Y. Khandakar, “Automatic time series forecasting: the forecast package for R”. Journal of Statistical Software, vol. 27, no. 3, pp. 1–22, 2008, doi: 10.18637/jss.v027.i03.
  • R. Hyndman, G. Athanasopoulos, C. Bergmeir, G. Caceres, L. Chhay, M. O’Hara-Wild, F. Petropoulos, S. Razbash, E. Wang, F. Yasmeen, “forecast: Forecasting functions for time series and linear models”. R package version 8.16, 2022, https://pkg.robjhyndman.com/forecast/
  • R. Gomajee, H. Torregrossa, C. Bolze, M. Melchior and F.E.K. Lesueur, “Decrease in cross-border tobacco purchases despite intensification of antitobacco policies in France”. Tobacco Control, vol. 30, no. 4, pp. 428-433, 2021, doi: 10.1136/tobaccocontrol-2019-055540.
  • A. Golpe, J.M. Martín-Álvarez, A. Galiano and E. Asensio, “Effect of IQOS introduction on Philip Morris International cigarette sales in Spain: a Logarithmic Mean Divisa Index decomposition approach”, Gaceta Sanitaria, vol. 36, 293-300, 2022, doi: 10.1016/j.gaceta.2021.12.007.
  • P. Cadahia, A. Golpe, J.M. Martín-Álvarez, E. Asensio, “The importance of price, income, and affordability in the demand for cigarettes in Spain”, Addicta: The Turkish Journal on Addictions, vol. 9, no. 3, 241-251, 2022, doi: 10.5152/ADDICTA.2022.22054.