The application of artificial intelligence in project management researcha review

  1. Jesús Gil Ruiz 1
  2. Javier Martínez Torres 2
  3. Rubén González Crespo 1
  1. 1 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

  2. 2 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

Revista:
IJIMAI

ISSN: 1989-1660

Año de publicación: 2021

Volumen: 6

Número: 6

Páginas: 54-66

Tipo: Artículo

DOI: 10.9781/IJIMAI.2020.12.003 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: IJIMAI

Resumen

The field of artificial intelligence is currently experiencing relentless growth, with innumerable models emerging in the research and development phases across various fields, including science, finance, and engineering. In this work, the authors review a large number of learning techniques aimed at project management. The analysis is largely focused on hybrid systems, which present computational models of blended learning techniques. At present, these models are at a very early stage and major efforts in terms of development is required within the scientific community. In addition, we provide a classification of all the areas within project management and the learning techniques that are used in each, presenting a brief study of the different artificial intelligence techniques used today and the areas of project management in which agents are being applied. This work should serve as a starting point for researchers who wish to work in the exciting world of artificial intelligence in relation to project leadership and management.

Referencias bibliográficas

  • H. R. Abbasianjahromi and H. Rajaie, “Application of fuzzy cbr and modm approaches in the project portfolio selection in construction companies,” Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol. 37, no. C1, pp. 143–155, 2013.
  • A. Y. Abdelaziz, M. Z. Kamh, S. F. Mekhamer, and M. A. L. Badr, “A hybrid HNN-QP approach for dynamic economic dispatch problem,” Electric Power Systems Research., vol. 78, no. 10, pp. 1784–1788, 2008, doi: 10.1016/j.epsr.2008.03.011.
  • R. Abduljabbar, H. Dia, S. Liyanage, and S. A. Bagloee, “Applications of artificial intelligence in transport: An overview,” Sustainability (Switzerland), vol. 11, no. 1. 2019, doi: 10.3390/su11010189.
  • A. Abraham, “Adaptation of Fuzzy Inference System Using Neural Learning, in Fuzzy Systems Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing,” Studies in Fuzziness and Soft Computing, vol. 181, no. 3, 2005.
  • B. Akay and D. Karaboga, “Artificial bee colony algorithm for large-scale problems and engineering design optimization,” Journal of Intelligent Manufacturing, vol. 23, pp. 1001–1014, 2012, doi: 10.1007/s10845-010- 0393-4.
  • F. Amer and M. Golparvar-Fard, “Formalizing Construction Sequencing Knowledge and Mining Company-Specific Best Practices from Past Project Schedules,” in Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2019, 2019, pp. 215–223, doi: 10.1061/9780784482421.028.
  • L. Angelis and I. Stamelos, “A simulation tool for efficient analogy based cost estimation,” Empirical Software Engineering, vol. 5, no. 1, pp. 35–68, 2000, doi: 10.1023/A:1009897800559.
  • D. Anguita, A. Ghio, N. Greco, L. Oneto, and S. Ridella, “Model selection for support vector machines: Advantages and disadvantages of the Machine Learning Theory,” in Proceedings of the International Joint Conference on Neural Networks, 2010, doi: 10.1109/IJCNN.2010.5596450.
  • O. Arslan and O. Yetik, “ANN based optimization of supercritical ORCBinary geothermal power plant: Simav case study,” in Applied Thermal Engineering, 2011, vol. 31, no. 17–18, pp. 3922–3928, doi: 10.1016/j. applthermaleng.2011.07.041.
  • L. Auria and R. A. Moro, “support vector machine as a Technique of Solvency analysis,” DIW Berlin, vol. 811, 2008. doi: 10.2139/ssrn.1424949.
  • R. F. Aziz, S. M. Hafez, and Y. R. Abuel-Magd, “Smart optimization for mega construction projects using artificial intelligence,” Alexandria Eng. J., vol. 53, no. 3, pp. 591–606, 2014, doi: 10.1016/j.aej.2014.05.003.
  • R. Bhattacharyya, P. Kumar, and S. Kar, “Fuzzy R&D portfolio selection of interdependent projects,” Computers and Mathematics with Applications, vol. 62, no. 10, pp. 3857–3870, 2011, doi: 10.1016/j.camwa.2011.09.036.T.
  • Bhoskar, O. K. Kulkarni, N. K. Kulkarni, S. L. Patekar, G. M. Kakandikar, and V. M. Nandedkar, “Genetic Algorithm and its Applications to Mechanical Engineering: A Review,” in Materials Today: Proceedings, 2015, vol. 2, no. 4–5, pp. 2624–2630, doi: 10.1016/j.matpr.2015.07.219.
  • W. Boejko, Z. Hejducki, and M. Wodecki, “Applying metaheuristic strategies in construction projects management,” Journal of Civil Engineering and Management, vol. 18, no. 5, pp. 621–630, Oct. 2012, doi: 10.3846/13923730.2012.719837.
  • E. Bottani, R. Montanari, M. Rinaldi, and G. Vignali, “Intelligent algorithms for warehouse management,” Intelligent Systems Reference Library, vol. 87, pp. 645–667, 2015, doi: 10.1007/978-3-319-17906-3_25.
  • G. Braswell, “Artificial Intelligence Comes of Age in Oil and Gas,” Journal of Petroleum Technology, vol. 65, no. 01, pp. 50–57, 2013, doi: 10.2118/0113-0050-jpt.
  • S. T. Buckland, A. C. Davison, and D. V. Hinkley, “Bootstrap Methods and Their Application,” Biometrics, vol. 52, no. 2, p. 795, 1998, doi: 10.2307/3109789.
  • E. Carmona, “Tutorial sobre Maquinas de Vectores Soporte (SVM).” 2016. UNED, Consultada en http://www. ia. uned. es/~ ejcarmona/ publicaciones/[2013-Carmona]%20SVM.pdf (fecha de consulta 01-07- 2017). A. Castillo, J.M, Cortes, C, Gonzalez, J., & Benito, “Prospecting The Future with AI,” Internacional Journal of Artificial Intelligence and Interactive Multimedia, vol. 1, no. 2, pp. 1–53, 2009.
  • C. Chapell and V. Vapnik, “Model selection for Support Vector Machines,” in Advances in Neural Information Processing Systems, 2000, pp. 230– 236, doi:10.5555/3009657.3009690
  • S. S. Chaudhry, M. W. Varano, and L. Xu, “Systems research, genetic algorithms and information systems,” Systems Research and Behavioral Science, 2000, doi: 10.1002/(sici)1099-1743(200003/04)17:23.3.co;2-h.
  • J. H. Chen and S. C. Hsu, “Hybrid ANN-CBR model for disputed change orders in construction projects,” Automation in Construction, 2007, doi: 10.1016/j.autcon.2007.03.003.
  • J. H. Chen, L. R. Yang, W. H. Chen, and C. K. Chang, “Case-based allocation of onsite supervisory manpower for construction projects,” Construction Management and Economics, 2008, doi: 10.1080/01446190802014778.
  • M. Y. Cheng, J. S. Chou, A. F. V. Roy, and Y. W. Wu, “High-performance Concrete Compressive Strength Prediction using Time-Weighted Evolutionary Fuzzy Support Vector Machines Inference Model,” Automation in Construction, 2012, doi: 10.1016/j.autcon.2012.07.004..
  • M. Y. Cheng, N. D. Hoang, A. F. V. Roy, and Y. W. Wu, “A novel timedepended evolutionary fuzzy SVM inference model for estimating construction project at completion,” Engineering Applications of Artificial Intelligence, vol. 25, no. 4, pp. 744–752, 2012, doi: 10.1016/j. engappai.2011.09.022.
  • M. Y. Cheng, L. C. Lien, H. C. Tsai, and P. H. Chen, “Artificial intelligence approaches to dynamic project success assessment taxonomic,” Life Science Journal, vol. 9, pp. 5156–5163, 2012.
  • M. Y. Cheng, H. C. Tsai, and W. S. Hsieh, “Web-based conceptual cost estimates for construction projects using Evolutionary Fuzzy Neural Inference Model,” Automation in Construction, vol. 18, no. 2, pp. 164–172, 2009, doi: 10.1016/j.autcon.2008.07.001.
  • M. Y. Cheng, H. C. Tsai, and C. L. Liu, “Artificial intelligence approaches to achieve strategic control over project cash flows,” Automation in Construction, vol. 18, no. 4, pp. 386–393, 2009, doi: 10.1016/j. autcon.2008.10.005.
  • M. Y. Cheng, H. C. Tsai, and E. Sudjono, “Evaluating subcontractor performance using evolutionary fuzzy hybrid neural network,” International Journal of Project Management, vol. 29, no. 3, pp. 349–356, 2011, doi: 10.1016/j.ijproman.2010.03.005.
  • M. Y. Cheng, H. C. Tsai, and E. Sudjono, “Evolutionary fuzzy hybrid neural network for conceptual cost estimates in construction projects,” in 2009 26th International Symposium on Automation and Robotics in Construction, ISARC 2009, 2009, pp. 512–519, doi: 10.22260/ isarc2009/0040.
  • M. Y. Cheng, D. K. Wibowo, D. Prayogo, and A. F. V. Roy, “Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model,” Journal of Civil Engineering and Management, vol. 21, no. 7, pp. 881–892, Oct. 2015, doi: 10.3846/13923730.2014.893922.
  • T. M. Cheng and R. Z. Yan, “Integrating messy genetic algorithms and simulation to optimize resource utilization,” Computer-Aided Civil and Infrastructure Engineering, vol. 24, no. 6, pp. 401–415, 2009, doi: 10.1111/j.1467-8667.2008.00588.x..
  • J. S. Chou, M. Y. Cheng, and Y. W. Wu, “Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models,” Expert Systems with Applications, vol. 40, no. 6, pp. 2263–2274, 2013, doi: 10.1016/j.eswa.2012.10.036.
  • J. S. Chou, M. Y. Cheng, Y. W. Wu, and A. D. Pham, “Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification,” Expert Syst. Appl., 2014, doi: 10.1016/j.eswa.2013.12.035.
  • J. S. Chou, M. Y. Cheng, Y. W. Wu, and A. D. Pham, “Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification,” Expert Systems with Applications, vol. 41, no. 8, pp. 3955–3964, 2014, doi: 10.1016/j.eswa.2013.12.035.
  • J. S. Chou and A. D. Pham, “Smart Artificial Firefly Colony AlgorithmBased Support Vector Regression for Enhanced Forecasting in Civil Engineering,” Computer-Aided Civil and Infrastructure Engineering, vol. 30, no. 9, pp. 715–732, 2015, doi: 10.1111/mice.12121.
  • J. S. Chou and A. D. Pham, “Smart Artificial Firefly Colony AlgorithmBased Support Vector Regression for Enhanced Forecasting in Civil Engineering,” Comput. Civ. Infrastruct. Eng., 2015, doi: 10.1111/ mice.12121.
  • J. S. Chou, A. D. Pham, and H. Wang, “Bidding strategy to support decision-making by integrating fuzzy AHP and regression-based simulation,” Automation in Construction, vol. 35, pp. 517–527, 2013, doi: 10.1016/j.autcon.2013.06.007.
  • D. K. Chua and P. K. Loh, “CB-Contract: Case-Based Reasoning Approach to Construction Contract Strategy Formulation,” Journal of Computing in Civil Engineering, vol. 20, no. 5, pp. 339–350, 2006, doi: 10.1061/ (asce)0887-3801(2006)20:5(339).
  • O. Cordón, “A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems,” International Journal of Approximate Reasoning, vol. 52, no. 6. pp. 894–913, 2011, doi: 10.1016/j.ijar.2011.03.004.
  • F. Costantino, G. Di Gravio, and F. Nonino, “Project selection in project portfolio management: An artificial neural network model based on critical success factors,” International Journal of Project Management, vol. 33, no. 8, pp. 1744–1754, 2015, doi: 10.1016/j.ijproman.2015.07.003.
  • E. Cox, Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. 2005. Doi: 10.1016/B978-0-12-194275-5.X5000-2.
  • A. L. A. Dalhoum and M. Al-Rawi, “High-Order Neural Networks are Equivalent to Ordinary Neural Networks,” Modern Applied Science, vol. 13, no. 2, p. 228, Jan. 2019, doi: 10.5539/mas.v13n2p228.
  • H. K. Dam, T. Tran, J. Grundy, A. Ghose, and Y. Kamei, “Towards effective AI-powered agile project management,” in Proceedings - 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER 2019, 2019, pp. 41–44, doi: 10.1109/ICSENIER.2019.00019.
  • R. Day, J. Zydallis, G. Lamont, and R. Pachter, “Analysis of fine granularity and building block sizes in the parallel fast messy GA,” in Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, 2002, vol. 1, pp. 127–132, doi: 10.1109/CEC.2002.1006221.
  • J. J. G. De la Rosa, A. A. Pérez, J. C. Palomares Salas, J. G. Ramiro Leo, and A. M. Muñoz, “A novel inference method for local wind conditions using genetic fuzzy systems,” Renewable Energy, vol. 36, no. 6, pp. 1747–1753, 2011, doi: 10.1016/j.renene.2010.12.017.
  • N. Dong, M. Fischer, D. Ge, and R. E. Levitt, “Automated look-ahead schedule generation and optimization for the finishing phase of complex construction projects,” CIFE Technical Report, Stanford University, no. June, p. 1 online resource., 2012.
  • S. Ebrahimnejad, S. M. Mousavi, and H. Seyrafianpour, “Risk identification and assessment for build-operate-transfer projects: A fuzzy multi attribute decision making model,” Expert Systems with Applications, vol. 37, no. 1, pp. 575–586, Jan. 2010, doi: 10.1016/j.eswa.2009.05.037.
  • T. Efendigil, S. Önüt, and C. Kahraman, “A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis,” Expert Systems with Applications, vol. 36, no. 3 PART 2, pp. 6697–6707, 2009, doi: 10.1016/j.eswa.2008.08.058.
  • B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy,” Statistical Science, vol. 1, no. 1, pp. 54–75, 1986, doi: 10.1214/ss/1177013815.
  • C. Egbu and S. Suresh, “Knowledge Mapping Techniques Within The Construction Industry:An Exploratory Study,” CIB W102-Information Knowl. Manag. Build., pp. 48–57, 2008.
  • C. Egbu and S. Suresh, “Knowledge Mapping Techniques Within The Construction Industry:An Exploratory Study,” CIB W102-Information and knowledge management in Buildings, pp. 48–57, 2008.
  • A. O. Esogbue and J. A. Murrell, “Fuzzy adaptive controller using reinforcement learning neural networks,” in 1993 IEEE International Conference on Fuzzy Systems, 1993, pp. 178–183, doi: 10.1109/ fuzzy.1993.327494.
  • W. H. Estler H.C, “Heuristic Search-Based Planning for Graph Transformation Systems,” ICAPS Workshop on Knowledge Engineering for Planning and Scheduling, p. 54, 2011.
  • A. M. Fahim, A. M. Salem, F. A. Torkey, and M. A. Ramadan, “Efficient enhanced k-means clustering algorithm,” Journal of Zhejiang University: Science, vol. 7, no. 10, pp. 1626–1633, 2006, doi: 10.1631/jzus.2006.A1626.
  • E. Faliagka et al., “On-line consistent ranking on e-recruitment: Seeking the truth behind a well-formed CV,” Artificial Intelligence Review, vol. 42, no. 3, pp. 515–528, 2014, doi: 10.1007/s10462-013-9414-y.
  • M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, and F. Herrera, “A review of the application of multiobjective evolutionary fuzzy systems: Current status and further directions,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 1, pp. 45–65, 2013, doi: 10.1109/TFUZZ.2012.2201338.
  • C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization,” Icga, vol. 93, no. July, pp. 416–423, 1993, doi: citeulike-article-id:2361311.
  • A. Fukunaga, G. Rabideau, S. Chien, and D. Yan, “Towards an application framework for automated planning and scheduling,” in IEEE Aerospace Applications Conference Proceedings, 1997, vol. 1, pp. 375–386, doi: 10.1109/aero.1997.574426.
  • T. Ganesan, P. Vasant, and I. Elamvazuthi, “Hopfield neural networks approach for design optimization of hybrid power systems with multiple renewable energy sources in a fuzzy environment,” Journal of Intelligent and Fuzzy Systems, vol. 26, no. 5, pp. 2143–2154, 2014, doi: 10.3233/IFS130889.
  • B. S. Garcia, R., Perez, I., Villavicencio, N., Piñero, P., “Experiences by using genetic algorithms in project scheduling,” Revista Cubana de Ciencias Informáticas, vol. 10, pp. 71–86, 2016.
  • L. Kota, “Artificial Intelligence in Logistics,” Advanced Logistic Systems - Theory and Practice, vol. 12, no. 1, pp. 47–60, 2019, doi: 10.32971/ als.2019.004.
  • Y. M. Goh and D. K. H. Chua, “Case-Based Reasoning Approach to Construction Safety Hazard Identification: Adaptation and Utilization,” Journal of Construction Engineering and Management, vol. 136, no. 2, pp. 170–178, 2010, doi: 10.1061/(asce)co.1943-7862.0000116.
  • D. Goldberg and K. Deb, “Rapid, accurate optimization of difficult problems using messy genetic algorithms,” proceedings of the fifth international conference on genetic algorithms, pp. 56–64, 1993.
  • D. GOLDBERG, “Messy Genetic Algorithms: Motivation, Analysis, and First Results,” Complex Systems, vol. 3, no. 5, pp. 493–530, 1989.
  • F. Hartman and R. A. Ashrafi, “Project Management in the Information Systems and Information Technologies Industries,” Project Management Journal, 2002, doi: 10.1177/875697280203300303.
  • H. Hashemi, S. M. Mousavi, and S. M. H. Mojtahedi, “Bootstrap technique for risk analysis with interval numbers in bridge construction projects,” J. Constr. Eng. Manag., 2011, doi: 10.1061/(ASCE)CO.1943-7862.0000344.
  • H. Hashemi, S. M. Mousavi, R. Tavakkoli-Moghaddam, and Y. Gholipour, “Compromise Ranking Approach with Bootstrap Confidence Intervals for Risk Assessment in Port Management Projects,” Journal of Management in Engineering, vol. 29, no. 4, pp. 334–344, 2013, doi: 10.1061/(asce) me.1943-5479.0000167.
  • T. Hegazy, “Optimization of construction time - Cost trade-off analysis using genetic algorithms,” Canadian Journal of Civil Engineering, vol. 26, no. 6, pp. 685–697, 1999, doi: 10.1139/l99-031.
  • D. Heiss-Czedik, “An Introduction to Genetic Algorithms.,” Artificial Life, vol. 3, no. 1, pp. 63–65, 1997, doi: 10.1162/artl.1997.3.63.
  • F. Herrera, “Genetic fuzzy systems: Taxonomy, current research trends and prospects,” Evolutionary Intelligence, vol. 1, no. 1, pp. 27–46, 2008, doi: 10.1007/s12065-007-0001-5.
  • X. Hu, B. Xia, M. Skitmore, and Q. Chen, “The application of casebased reasoning in construction management research: An overview,” Automation in Construction, vol. 72. pp. 65–74, 2016, doi: 10.1016/j. autcon.2016.08.023.
  • Y. Hu, X. Zhang, E. W. T. Ngai, R. Cai, and M. Liu, “Software project risk analysis using Bayesian networks with causality constraints,” Decision Support Systems, vol. 56, no. 1, pp. 439–449, Dec. 2013, doi: 10.1016/j. dss.2012.11.001.
  • S. V. Ioannou, A. T. Raouzaiou, V. A. Tzouvaras, T. P. Mailis, K. C. Karpouzis, and S. D. Kollias, “Emotion recognition through facial expression analysis based on a neurofuzzy network,” Neural Networks, vol. 18, no. 4, pp. 423–435, 2005, doi: 10.1016/j.neunet.2005.03.004.
  • H. Ishibuchi, “Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases,” Fuzzy Sets and Systems, vol. 141, no. 1, pp. 161–162, 2004, doi: 10.1016/s0165-0114(03)00262-8.
  • M. Jain and K. K. Pathak, “Applications of artificial neural network in construction engineering and management - A review,” International Journal of Engineering Technology, Management and Applied Sciences, vol. 2, no. 3, pp. 134–142, 2014.
  • H. R. Jantan, A. A. Hamdan, and Z. Othman, “Human Talent Forecasting using Data Mining Classification Techniques,” International Journal of Technology Diffusion, vol. 1, no. 4, pp. 29–41, 2011, doi: 10.4018/ jtd.2010100103.
  • H. Jantan, “Human Talent Prediction in HRM using C4 . 5 Classification Algorithm,” International Journal on Computer Science and Engineering, vol. 02, no. 08, pp. 2526–2534, 2010.
  • C. D. Jeffries, “Tracking, code recognition, and memory management with high-order neural networks”,Applications and Science of Artificial Neural Networks, 1995, vol. 2492, pp. 964–973, doi: 10.1117/12.205207.
  • L. Jin, C. Zhang, X. Shao, and G. Tian, “Mathematical modeling and a memetic algorithm for the integration of process planning and scheduling considering uncertain processing times,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, no. 7, pp. 1272–1283, 2016, doi: 10.1177/0954405415625916.
  • V. Kachitvichyanukul, “Comparison of Three Evolutionary Algorithms: GA, PSO, and DE,” Industrial Engineering and Management Systems, vol. 11, no. 3, pp. 215–223, 2012, doi: 10.7232/iems.2012.11.3.215.
  • V. Kalaivani and M. M. Elamparithi, “An Efficient Classification Algorithms for Employee Performance Prediction,” International Journal of Research in Advent Technology, vol. 2, no. 9, pp. 27–32, 2014.
  • S. A. Kalogirou, “Artificial neural networks and genetic algorithms for the optimisation of solar thermal systems,” in Artificial Intelligence in Energy and Renewable Energy Systems, Nova Science Publishers, Inc., 2006, pp. 131–162.
  • T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means clustering algorithms: Analysis and implementation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881–892, 2002, doi: 10.1109/ TPAMI.2002.1017616.
  • S. Kar, S. Das, and P. K. Ghosh, “Applications of neuro fuzzy systems: A brief review and future outline,” Applied Soft Computing Journal, vol. 15. pp. 243–259, 2014, doi: 10.1016/j.asoc.2013.10.014.
  • H. Kargupta, “SEARCH, polynomial complexity, and the fast messy genetic algorithm,” Urbana, vol. 51, no. 95008, p. 188, 1996.
  • N. A. Kartam, R. E. Levitt, and D. E. Wilkins, “Extending Artificial Intelligence Techniques for Hierarchical Planning,” Journal of Computing in Civil Engineering, vol. 5, no. 4, pp. 464–477, 1991, doi: 10.1061/ (asce)0887-3801(1991)5:4(464).
  • G. H. Kim, S. H. An, and K. I. Kang, “Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning,” Build. Environ., 2004, doi: 10.1016/j. buildenv.2004.02.013.
  • G. H. Kim, S. H. An, and K. I. Kang, “Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning,” Building and Environment, vol. 39, no. 10, pp. 1235–1242, 2004, doi: 10.1016/j.buildenv.2004.02.013.
  • O. Kisi, “Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach,” Energy, vol. 64, pp. 429–436, 2014, doi: 10.1016/j.energy.2013.10.009.
  • M. Klumpp, “Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements,” International Journal of Logistics Research and Applications, vol. 21, no. 3, pp. 224–242, 2018, doi: 10.1080/13675567.2017.1384451.
  • C. H. Ko and M. Y. Cheng, “Hybrid use of AI techniques in developing construction management tools,” Automation in Construction, vol. 12, no. 3, pp. 271–281, May 2003, doi: 10.1016/S0926-5805(02)00091-2.
  • C.-H. Ko and M.-Y. Cheng, “Dynamic Prediction of Project Success Using Artificial Intelligence,” Journal of Construction Engineering and Management, vol. 133, no. 4, pp. 316–324, 2007, doi: 10.1061/(asce)0733- 9364(2007)133:4(316).
  • C. H. Ko, M. Y. Cheng, and T. K. Wu, “Evaluating sub-contractors performance using EFNIM,” Automation in Construction, vol. 16, no. 4, pp. 525–530, 2007, doi: 10.1016/j.autcon.2006.09.005.
  • K. A. H. Kobbacy, “Application of Artificial Intelligence in maintenance modelling and management,” in IFAC Proceedings Volumes (IFACPapersOnline), 2012, doi: 10.3182/20121122-2-ES-4026.00046.
  • K. A. H. Kobbacy, “Application of Artificial Intelligence in maintenance modelling and management,” in IFAC Proceedings Volumes (IFACPapersOnline), 2012, vol. 45, no. 31, pp. 54–59, doi: 10.3182/20121122-2- ES-4026.00046.
  • M. Kumar, M. Husain, N. Upreti, and D. Gupta, “Genetic Algorithm: Review and Application,” SSRN Electronic Journal, vol. 2, no. 2, pp. 451– 454, 2020, doi: 10.2139/ssrn.3529843.
  • H. K. Kwan, “High-order feedbackward neural networks,” 1991, pp. 49– 51, doi: 10.1109/ciccas.1991.184277.
  • H. Kwasnicka and M. Przewozniczek, “Multi population pattern searching algorithm: A new evolutionary method based on the idea of messy genetic algorithm,” IEEE Trans. Evol. Comput., 2011, doi: 10.1109/ TEVC.2010.2102038.
  • M. Lahmann, “AI will transform project management. Are you ready?,” Pwc Switzerland, 2018. [online]. Available: https://www.pwc.ch/en/ insights/risk/transformation-assurance-ai-will-transform-projectmanagement-are-you-ready.html.
  • M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms for multi-objective optimization,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2002, vol. 2439, pp. 298–307, doi: 10.1007/3-540- 45712-7_29.
  • G. G. Lendaris, K. Mathia, and R. Saeks, “Linear Hopfield networks and constrained optimization,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29, no. 1, pp. 114–118, 1999, doi: 10.1109/3477.740171.
  • F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE Circuits and Systems Magazine, vol. 9, no. 3, pp. 32–50, 2009, doi: 10.1109/MCAS.2009.933854.
  • M. Y. Leyva Vázquez, K. Pérez Teruel, A. Febles Estrada, and J. Gulín González, “Mapas cognitivos difusos para la selección de proyectos de tecnologías de la información,” Contaduría y Administración, vol. 58, no. 4, pp. 95–117, 2013, doi: 10.1016/s0186-1042(13)71235-x.
  • X. Li, L. Gao, and W. Li, “Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling,” Expert Systems with Applications, vol. 39, no. 1, pp. 288– 297, 2012, doi: 10.1016/j.eswa.2011.07.019.
  • Z. Li, Y. Wang, and K. S. Wang, “Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario,” Advances in Manufacturing, vol. 5, no. 4, pp. 377–387, 2017, doi: 10.1007/ s40436-017-0203-8.
  • R. . Lozada, “Redes neuronales y logica difusa aplicado a un sistema climatológico,” Universidad nacional de San Agustin, 2017.
  • P. C. K. Luk, K. C. Low, and A. Sayiah, “GA-based fuzzy logic control of a solar power plant using distributed collector fields,” Renewable Energy, vol. 16, no. 1–4, pp. 765–768, 1999, doi: 10.1016/s0960-1481(98)00275-4.
  • M. M. Mijwil, “Artificial Neural Networks Advantages and Disadvantages,” Linkedin, no. March, 2018.
  • V. Machairas, A. Tsangrassoulis, and K. Axarli, “Algorithms for optimization of building design: A review,” Renewable and Sustainable Energy Reviews, vol. 31. pp. 101–112, 2014, doi: 10.1016/j.rser.2013.11.036.
  • J. G. MacKinnon, “Bootstrap methods in econometrics,” in Economic Record, 2006, vol. 82, no. SPEC. ISS. 1, doi: 10.1111/j.1475- 4932.2006.00328.x.
  • D. Magaña Martínez and J. C. Fernandez-Rodriguez, “Artificial Intelligence Applied to Project Success: A Literature Review,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 3, no. 5, p. 77, 2015, doi: 10.9781/ijimai.2015.3510.
  • R. Mahajan and G. Kaur, “Neural Networks using Genetic Algorithms,” International Journal of Computer Applications, vol. 77, no. 14, pp. 6–11, Sep. 2013, doi: 10.5120/13549-1153.
  • M. G. Marchetta and R. Q. Forradellas, “An artificial intelligence planning approach to manufacturing feature recognition,” CAD Computer Aided Design, vol. 42, no. 3, pp. 248–256, 2010, doi: 10.1016/j.cad.2009.11.007.
  • A. Mellit, S. a Kalogirou, and M. Drif, “Application of neural networks and genetic algorithms for sizing of photovoltaic systems,” Renewable Energy, vol. 35, no. 12, pp. 2881–2893, 2010, doi: 10.1016/j.renene.2010.04.017.
  • V. M. Menon and H. A. Rahulnath, “A novel approach to evaluate and rank candidates in a recruitment process by estimating emotional intelligence through social media data,” in 2016 International Conference on Next Generation Intelligent Systems, ICNGIS 2016, 2017, doi: 10.1109/ ICNGIS.2016.7854061.
  • S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, 2016, doi: 10.1016/j. advengsoft.2016.01.008.
  • J. R. Montoya-Torres, E. Gutierrez-Franco, and C. Pirachicán-Mayorga, “Project scheduling with limited resources using a genetic algorithm,” International Journal of Project Management, vol. 28, no. 6, pp. 619–628, 2010, doi: 10.1016/j.ijproman.2009.10.003.
  • A. Moreno and T. Redondo, “Text Analytics: the convergence of Big Data and Artificial Intelligence,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 3, no. 6, p. 57, 2016, doi: 10.9781/ijimai.2016.369.
  • O. Moselhi, T. Hegazy, and P. Fazio, “Neural Networks as Tools in Construction,” Journal of Construction Engineering and Management, vol. 117, no. 4, pp. 606–625, 1991, doi: 10.1061/(asce)0733- 9364(1991)117:4(606).
  • G. P. Moustris, S. C. Hiridis, K. M. Deliparaschos, and K. M. Konstantinidis, “Evolution of autonomous and semi-autonomous robotic surgical systems: A review of the literature,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 7, no. 4. pp. 375–392, 2011, doi: 10.1002/rcs.408.
  • K. N. Mutter, Z. M. Jafri, and A. A. Aziz, “Hopfield Neural Network (HNN) Improvement for color image recognition using multi-bitplane and multiconnect architecture,” in Computer Graphics, Imaging and Visualisation: New Advances, CGIV 2007, 2007, pp. 403–407, doi: 10.1109/CGIV.2007.24.
  • M. Mylrea and N. G. Gourisetti, “Cybersecurity and optimization in smart ‘autonomous’ buildings,” in Autonomy and Artificial Intelligence: A Threat or Savior?, 2017, pp. 263–294.
  • G. Napoles, “Algoritmo para mejorar la convergencia en Mapas Cognitivos Difusos Sigmoidales,” Universidad Central “Marta Abreu” de Las Villas Facultad de Matemática, Física y Computación., 2014.
  • D. Nau, S. Gupta, and W. Regli, “Manufacturing-Operation Planning Versus AI Planning,” in AAAI Spring Symposium on Integrated Planning Applications, 1995.
  • M. Obayashi, T. Nishida, T. Kuremoto, K. Kobayashi, and L. B. Feng, “A reinforcement learning system embedded agent with neural networkbased multi-valued pattern memory structure,” in ICCAS 2010 - International Conference on Control, Automation and Systems, 2010, pp. 176–181, doi: 10.1109/iccas.2010.5669888.
  • D. A. Patel and K. N. Jha, “Neural Network Model for the Prediction of Safe Work Behavior in Construction Projects,” Journal of Construction Engineering and Management, vol. 141, no. 1, p. 04014066, 2015, doi: 10.1061/(asce)co.1943-7862.0000922.
  • M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA : The Bayesian Optimization Algorithm 1 Introduction,” Proceedings of the genetic and evolutionary computation conference GECCO-99, vol. 1, pp. 525–532, 1999.
  • T. Pfeufer and M. Ayoubi, “Application of a hybrid neuro-fuzzy system to the fault diagnosis of an automotive electromechanical actuator,” Fuzzy Sets and Systems, vol. 89, no. 3, pp. 351–360, 1997, doi: 10.1016/S0165- 0114(97)00022-5.
  • PMI, PMBOK Guide | Project Management Institute. 2017.
  • S. M. Pourkiaei, M. H. Ahmadi, and S. M. Hasheminejad, “Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network,” Mech. Ind., 2016, doi: 10.1051/meca/2015050.
  • R. Prieto, “Impacts of Artificial Intelligence on Management of Large Complex Projects,” PM World Journal, vol. 8, no. 5, pp. 1–20, 2019.
  • A. Rehman and T. Saba, “Evaluation of artificial intelligent techniques to secure information in enterprises,” Artificial Intelligence Review, vol. 42, no. 4, pp. 1029–1044, 2014, doi: 10.1007/s10462-012-9372-9.
  • C. Renzi, F. Leali, M. Cavazzuti, and A. O. Andrisano, “A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems,” International Journal of Advanced Manufacturing Technology, vol. 72, no. 1–4, pp. 403–418, 2014, doi: 10.1007/s00170-014-5674-1.
  • L. Ricalde, B. Cruz, and E. Sánchez, “Control neuronal recurrente de alto orden para turbinas de viento con generador síncrono de imán permanente,” Computación y Sistemas, vol. 14, no. 2, pp. 133–143, 2010.
  • L. Rodriguez-Repiso, R. Setchi, and J. L. Salmeron, “Modelling IT projects success with Fuzzy Cognitive Maps,” Expert Systems with Applications, vol. 32, no. 2, pp. 543–559, 2007, doi: 10.1016/j.eswa.2006.01.032.
  • L. Rutkowski, K. Cpałka, R. Nowicki, A. Pokropińska, and R. Scherer, “Neuro-fuzzy systems,” in Computational Complexity: Theory, Techniques, and Applications, vol. 9781461418, 2012, pp. 2069–2081.
  • A. N. Sadigh, H. Mokhtari, M. Iranpoor, and S. M. T. Fatemi Ghomi, “Cardinality constrained portfolio optimization using a hybrid approach based on particle swarm optimization and hopfield neural network,” Advanced Science Letters, vol. 17, no. 1, pp. 11–20, 2012, doi: 10.1166/ asl.2012.3666.
  • E. L. O. Savaş Bayram, Mehmet Emin Öcal, “Analysis of Cost and Schedule Variances in Construction Works with Artificial Intelligence Approaches: The Case of Turkey,” in International Students’ Conference of Civil Engineering, ISCCE, 2012, pp. 10–11.
  • T. Schmitt, P. Caillou, and M. Sebag, “Matching Jobs and Resumes: a Deep Collaborative Filtering Task,” 2018, vol. 41, pp. 124–109, doi: 10.29007/17rz.
  • S. G. Selivanov, S. N. Poezjalova, and O. A. Gavrilova, “The Use of Artificial Intelligence Methods of Technological Preparation of EngineBuilding Production,” American Journal of Industrial Engineering, vol. 2, no. 1, pp. 10–14, 2014, doi: 10.12691/AJIE-2-1-3.R.
  • R. Sonmez, “Parametric Range Estimating of Building Costs Using Regression Models and Bootstrap,” Journal of Construction Engineering and Management, vol. 134, no. 12, pp. 1011–1016, 2008, doi: 10.1061/ (asce)0733-9364(2008)134:12(1011).
  • C. D. Stylios and P. P. Groumpos, “Modeling Complex Systems Using Fuzzy Cognitive Maps,” IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., vol. 34, no. 1, pp. 155–162, 2004, doi: 10.1109/TSMCA.2003.818878.
  • L. Suganthi, S. Iniyan, and A. A. Samuel, “Applications of fuzzy logic in renewable energy systems - A review,” Renewable and Sustainable Energy Reviews, vol. 48. pp. 585–607, 2015, doi: 10.1016/j.rser.2015.04.037.
  • M. Sugeno and T. Yasukawa, “A Fuzzy-Logic-Based Approach to Qualitative Modeling,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, pp. 7–31, 1993, doi: 10.1109/TFUZZ.1993.390281.
  • H. K. Sulehria and Y. Zhang, “Hopfield Neural Networks — A Survey,” Engineering, pp. 125–130, 2007.
  • R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 1054–1054, Sep. 1998, doi: 10.1109/tnn.1998.712192.
  • N. Syam and A. Sharma, “Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice,” Ind. Mark. Manag., vol. 69, pp. 135–146, 2018, doi: 10.1016/j.indmarman.2017.12.019.
  • J. L. Thames, R. Abler, and A. Saad, “Hybrid intelligent systems for network security,” in Proceedings of the Annual Southeast Conference, 2006, vol. 2006, pp. 286–289, doi: 10.1145/1185448.1185513.
  • M. K. Tiwari and C. Chatterjee, “Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach,” Journal of Hydrology, vol. 394, no. 3–4, pp. 458–470, 2010, doi: 10.1016/j.jhydrol.2010.10.001.
  • M. K. Tiwari and C. Chatterjee, “Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs),” Journal of Hydrology, vol. 382, no. 1–4, pp. 20–33, 2010, doi: 10.1016/j.jhydrol.2009.12.013.
  • A. Tsakonas and B. Gabrys, “A fuzzy evolutionary framework for combining ensembles,” Applied Soft Computing Journal, vol. 13, no. 4, pp. 1800–1812, 2013, doi: 10.1016/j.asoc.2012.12.027.
  • TutorialPoint.com, “Artificial Intelligence - Fuzzy Logic Systems.” [online]. Available: https://www.tutorialspoint.com/artificial_ intelligence/artificial_intelligence_fuzzy_logic_systems.htm.
  • H. Umit, “Digital business strategies in blockchain ecosystems : transformational design and future of global business (E-book),” Contributions to Management Science, pp. 569–599, 2000.
  • N. T. T. Vu, N. P. Tran, and N. H. Nguyen, “Adaptive neuro-fuzzy inference system based path planning for excavator arm,” Journal of Robotics, vol. 2018, 2018, doi: 10.1155/2018/2571243.
  • K. Wang and Y. Wang, “How AI Affects the Future Predictive Maintenance: A Primer of Deep Learning,” in Lecture Notes in Electrical Engineering, 2018, doi: 10.1007/978-981-10-5768-7_1.
  • Z. Wang and R. S. Srinivasan, “A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models,” Renewable and Sustainable Energy Reviews. 2017, doi: 10.1016/j.rser.2016.10.079.
  • M. Wauters and M. Vanhoucke, “Support Vector Machine Regression for project control forecasting,” Automation in Construction, vol. 47, pp. 92–106, 2014, doi: 10.1016/j.autcon.2014.07.014.
  • R. Wehrens, H. Putter, and L. M. C. Buydens, “The bootstrap: A tutorial,” Chemometrics and Intelligent Laboratory Systems, vol. 54, no. 1, pp. 35–52, 2000, doi: 10.1016/S0169-7439(00)00102-7.
  • G. C. Whitley, D., Beveridge, J.R, GuerraSalcedo C., “Messy Genetic Algorithms for Subset Feature Selection,” Department of Computer Science, pp. 568--575, 1997.
  • T. C. Wong, K. M. Y. Law, H. K. Yau, and S. C. Ngan, “Analyzing supply chain operation models with the PC-algorithm and the neural network,” Expert Systems with Applications, vol. 38, no. 6, pp. 7526–7534, 2011, doi: 10.1016/j.eswa.2010.12.115.
  • J. A. Yacim and D. G. B. Boshoff, “Impact of artificial neural networks training algorithms on accurate prediction of property values,” Journal of Real Estate Research, 2018.
  • L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338– 353, 1965, doi: 10.1016/S0019-9958(65)90241-X.
  • S. M. Zahraee, M. Khalaji Assadi, and R. Saidur, “Application of Artificial Intelligence Methods for Hybrid Energy System Optimization,” Renewable and Sustainable Energy Reviews, vol. 66. pp. 617–630, 2016, doi: 10.1016/j.rser.2016.08.028.
  • G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks: The state of the art,” International Journal of Forecasting, vol. 14, no. 1, pp. 35–62, 1998, doi: 10.1016/S0169-2070(97)00044-7.
  • J. Zhang, “Developing robust non-linear models through bootstrap aggregated neural networks,” Neurocomputing, vol. 25, no. 1–3, pp. 93– 113, 1999, doi: 10.1016/S0925-2312(99)00054-5.