Bayesian knowledge tracing for navigation through Marzano’s taxonomy
- Francisco Cervantes-Pérez 1
- Joaquin Navarro-Perales 2
- Ana L. Franzoni-Velázquez 3
- Luis de la Fuente Valentín 4
- 1 Universidad Internacional de La Rioja en México
- 2 2 Universidad Nacional Autónoma de México
- 3 3 Instituto Tecnológico Autónomo de México
-
4
Universidad Internacional de La Rioja
info
ISSN: 1989-1660
Año de publicación: 2021
Volumen: 6
Número: 6
Páginas: 234-239
Tipo: Artículo
Otras publicaciones en: IJIMAI
Resumen
In this paper we propose a theoretical model of an ITS (Intelligent Tutoring Systems) capable of improving and updating computer-aided navigation based on Bloom’s taxonomy. For this we use the Bayesian Knowledge Tracing algorithm, performing an adaptive control of the navigation among different levels of cognition in online courses. These levels are defined by a taxonomy of educational objectives with a hierarchical order in terms of the control that some processes have over others, called Marzano’s Taxonomy, that takes into account the metacognitive system, responsible for the creation of goals as well as strategies to fulfill them. The main improvements of this proposal are: 1) An adaptive transition between individual assessment questions determined by levels of cognition. 2) A student model based on the initial response of a group of learners which is then adjusted to the ability of each learner. 3) The promotion of metacognitive skills such as goal setting and self-monitoring through the estimation of attempts required to pass the levels. One level of Marzano's taxonomy was left in the hands of the human teacher, clarifying that a differentiation must be made between the tasks in which an ITS can be an important aid and in which it would be more difficult.
Referencias bibliográficas
- H. S. Nwana, “Intelligent tutoring systems: an overview,” Artificial Intelligence Review, vol. 4, no. 4, pp. 251–277, 1990.
- Barr, A. and Feigenbaum, E, The Handbook of Artificial Intelligence. Volume 2. HeurisTech Press and William Kaufmann, Inc. Los Altos California, 1982.
- Hartley, J. R. and Sleeman, D. H. “Towards more intelligent teaching systems”. International Journal of Man-Machine Studies, vol. 5, No.2, pp. 215–236, 1973.
- M. Badaracco and L. Martínez, “An intelligent tutoring system architecture for competency-based learning”, in International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, 2011, pp. 124-133.
- M. Beutelspacher, A. L. Franzoni, and A. Morales, “Sistema de apoyo generalizado para la enseñanza individualizada (SAGE)”, Instituto Tecnológico Autónomo de México, México, 1995.
- Y. Long and V. Aleven, “Mastery-Oriented Shared Student/System Control Over Problem Selection in a Linear Equation Tutor”, in Intelligent Tutoring Systems, vol. 9684, A. Micarelli, J. Stamper, y K. Panourgia, Eds. Cham: Springer International Publishing, 2016, pp. 90-100.
- G. Fenza, F. Orciuoli, and D. G. Sampson, “Building Adaptive Tutoring Model Using Artificial Neural Networks and Reinforcement Learning”, in 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), 2017, pp. 460-462.
- G. Fenza and F. Orciuoli, “Building Pedagogical Models by Formal Concept Analysis”, in Intelligent Tutoring Systems, vol. 9684, A. Micarelli, J. Stamper, y K. Panourgia, Eds. Cham: Springer International Publishing, 2016, pp. 144-153.
- V. Dimitrova and P. Brna, “From Interactive Open Learner Modelling to Intelligent Mentoring: STyLE-OLM and Beyond”, International Journal of Artificial Intelligence in Education, vol. 26, no. 1, pp. 332-349, mar. 2016.
- R. Denaux, V. Dimitrova, L. Lau, P. Brna, D. Thakker, and C. Steiner, “Employing linked data and dialogue for modelling cultural awareness of a user”, in Proceedings of the 19th international conference on Intelligent User Interfaces - IUI ’14, Haifa, Israel, 2014, pp. 241-246.
- A. K. Goel and L. Polepeddi, “Jill Watson: A Virtual Teaching Assistant for Online Education”, p. 21.
- M. Magdin, D. Držík, J. Reichel, and S. Koprda, “The Possibilities of Classification of Emotional States Based on User Behavioral Characteristics”. International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 4, pp. 97-104. 2020. http://doi. org/10.9781/ijimai.2020.11.010
- P. Pham and J. Wang, “Adaptive review for mobile MOOC learning via implicit physiological signal sensing”, in Proceedings of the 18th ACM International Conference on Multimodal Interaction - ICMI 2016, Tokyo, Japan, 2016, pp. 37-44.
- J. Hernandez, P. Paredes, A. Roseway, and M. Czerwinski, “Under pressure: sensing stress of computer users”, in Proceedings of the 32nd annual ACM conference on Human factors in computing systems - CHI ’14, Toronto, Ontario, Canada, 2014, pp. 51-60.
- A. K. Vail, J. F. Grafsgaard, K. E. Boyer, E. N. Wiebe, and J. C. Lester, “Predicting Learning from Student Affective Response to Tutor Questions”, in Intelligent Tutoring Systems, vol. 9684, A. Micarelli, J. Stamper, y K. Panourgia, Eds. Cham: Springer International Publishing, 2016, pp. 154-164.
- M. Taub and R. Azevedo, “Using Eye-Tracking to Determine the Impact of Prior Knowledge on Self-Regulated Learning with an Adaptive Hypermedia-Learning Environment”, in Intelligent Tutoring Systems, vol. 9684, A. Micarelli, J. Stamper, y K. Panourgia, Eds. Cham: Springer International Publishing, 2016, pp. 34-47.
- R. Janning, C. Schatten, and L. Schmidt-Thieme, “Perceived task-difficulty recognition from log-file information for the use in adaptive intelligent tutoring systems”, International Journal of Artificial Intelligence in Education, vol. 26, no. 3, pp. 855-876, 2016.
- M. Wixon, I. Arroyo, K. Muldner, W. Burleson, D. Rai, y B. Woolf, “The opportunities and limitations of scaling up sensor-free affect detection”, in Educational Data Mining 2014, 2014.
- M. A. Azim and M. H. Bhuiyan, “Text to Emotion Extraction Using Supervised Machine Learning Techniques”, Telkomnika, vol. 16, no. 3, 2018.
- D. C. Muñoz, A. Ortiz, C. Gonzalez, D. M. Lopez, and B. Blobel. “Effective e-learning for health professional and medical students: The experience with SIAS-intelligent tutoring system”. Studies in Health Technology and Informatics, Vol. 156, pp. 89–102. 2010.
- R. Costello. “Adaptive intelligent personalised learning (AIPL) environment (U621351 Ph.D.)”, University of Hull (United Kingdom), Ann Arbor. ProQuest Dissertations and Theses A&I; ProQuest Dissertations & Theses Global database. 2012.
- L. S. Myneni, N. H. Narayanan, S. Rebello, A. Rouinfar, and S. Pumtambekar. “An interactive and intelligent learning system for physics education”. IEEE Transactions on Learning Technologies, Vol. 6, no. 3, pp. 228–239. doi:10.1109/TLT.2013.26
- D. Weragama and J. Reye. “Analysing student programs in the PHP intelligent tutoring system”. International Journal of Artificial Intelligence in Education, vol. 24, no. 2, pp. 162–188. 2014.
- D. Hooshyar, R. B. Ahmad, M. Yousefi, F. D. Yusop, and S.J. Horng. “A flowchart-based intelligent tutoring system for improving problemsolving skills of novice programmers”. Journal of Computer Assisted Learning, vol. 31(4), pp. 345–361. 2015.
- B. Grawemeyer, M. Mavrikis, W. Holmes, G. S. Sergio, M. Wiedmann and N. Rummel. “Affecting Off-task Behaviour: How affect-aware feedback can improve student learning”. ACM international Conference Proceeding Series. 2016.
- N. El Ghouch, E.-N. El Mokhtar and Y. Z. Seghroucheni. “Analysing the outcome of a learning process conducted within the system ALS_CORR [LP]”. International Journal of Emerging Technologies in Learning, vol. 12, no. 3, pp. 43–56. 2017
- F. Grivokostopoulou, I. Perikos and I. Hatzilygeroudis. “An educational system for learning search algorithms and Automatically Assessing student performance”. International Journal of Artificial Intelligence in Education, vol. 27, no. 1, pp. 207– 240. doi:10.1007/s40593-016-0116-x. 2017.
- B. Mostafavi, and T. Barnes. “Evolution of an intelligent deductive logic tutor using data-driven elements”. International Journal of Artificial Intelligence in Education, vol. 27, no. 1, pp. 5–36. 2017.
- B. S. Bloom, “Taxonomy of educational objectives. Vol. 1: Cognitive domain”, N. Y. McKay, pp. 20-24, 1956.
- A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the acquisition of procedural knowledge”, User Modeling and User-Adapted Interaction, vol. 4, no. 4, pp. 253-278, 1995.
- R. C. Atkinson and J. A. Paulson, “An approach to the psychology of instruction”, Psychol. Bull., vol. 78, no. 1, pp. 49-61, 1972.
- R. S. J. d. Baker, A. T. Corbett, and V. Aleven, “More Accurate Student Modeling through Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing”, in Intelligent Tutoring Systems, vol. 5091, B. P. Woolf, E. Aïmeur, R. Nkambou, y S. Lajoie, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 406-415.
- R. J. Marzano and J. S. Kendall, The new taxonomy of educational objectives. Corwin Press, 2006.
- M. Csikszentmihalyi, Applications of Flow in Human Development and Education. Dordrecht: Springer Netherlands, 2014.
- J.C. Sánchez-Prieto, J Cruz-Benito, R. Therón, and F. García-Peñalvo, “Assessed by Machines: Development of a TAM-Based Tool to Measure AI-based Assessment Acceptance Among Students”. International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 4, pp. 80-86, 2020. http://doi.org/10.9781/ijimai.2020.11.009
- C.J. Villagrá-Arnedo, F.J. Gallego-Durán, F. Llorens-Largo, R. SatorreCuerda, P. Compañ-Rosique, and R. Molina-Carmona, “Time-Dependent Performance Prediction System for Early Insight in Learning Trends”. International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 2, pp. 112-124, 2020. http://doi.org/10.9781/ijimai.2020.05.006