Evaluar el Pensamiento Computacional mediante Resolución de ProblemasValidación de un Instrumento de Evaluación

  1. Ortega Ruipérez, Beatriz 1
  2. Asensio Brouard, Mikel 2
  1. 1 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

  2. 2 Universidad Autónoma de Madrid
    info

    Universidad Autónoma de Madrid

    Madrid, España

    ROR https://ror.org/01cby8j38

Revista:
Revista Iberoamericana de Evaluación Educativa

ISSN: 1989-0397

Any de publicació: 2021

Títol de l'exemplar: Evaluación docente

Volum: 14

Número: 1

Pàgines: 153-171

Tipus: Article

DOI: 10.15366/RIEE2021.14.1.009 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Altres publicacions en: Revista Iberoamericana de Evaluación Educativa

Resum

Computational thinking is being assessed, in most approaches, through elements of programming. From here, an evaluation approach is promoted from the resolution of complex problems, as this thinking is used as a problem-solving strategy. This article validates the theoretical construct of an assessment instrument to measure computational thinking through complex problem solving, with a test battery composed of 15 items. First, the principles used for the design are described, principles based on the multiple complex systems assessment approach and the PISA framework used in 2012. Subsequently, the proposed 2-factor theoretical model is discussed: problem representation and problem resolution, and several additional models with adjustments from the theoretical model. It is determined that the best fitting model is the 2-factor model, coinciding with the theoretical proposal. Finally, analyses are made, on the one hand of the suitability of the items to each factor, thus confirming the suitability of the items, and on the other hand, the correlation between factors, obtaining a 0.969. It is concluded that the instrument has a very high degree of validity, so that it is suitable for measuring computational thinking through problem solving. 

Referències bibliogràfiques

  • Blackwell, A. F., Church, L. y Green, T. R. G. (2008). The abstract is' an enemy': Alternative perspectives to computational thinking [Comunicación]. 20 Taller annual de Psychology of Programming Interest Group, Lancaster, Reino Unido.
  • Brennan, K. y Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking [Comunicación]. Annual meeting of the American Educational Research Association, Vancouver, Canada.
  • Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Thinking y Reasoning, 7(1), 69-89. https://doi.org/10.1080/13546780042000046
  • Funke, J. (2013). Human problem solving in 2012. The Journal of Problem Solving, 6(1), 2-19. https://doi.org/10.7771/1932-6246.1156
  • Funke, J. y Frensch, P. (1995). Complex problem-solving research in North America and Europe: An integrative review. Foreign Psychology, 5, 42-47.
  • Gallardo-Gil, M., Fernández-Navas, M., Sepúlveda-Ruiz, M. P., Serván, M. J., Yus, R. y Barquín, J. (2010). PISA y la competencia científica: Un análisis de las pruebas de PISA en el Área de Ciencias. RELIEVE, 16(2), 1-17. https://doi.org/10.7203/relieve.16.2.4138
  • González-Mayorga, H., Vidal, J. y Vieira, M. J. (2017). El impacto del Informe PISA en la sociedad española: el caso de la prensa escrita. Revista Electrónica de Investigación y Evaluación Educativa, 23(1), 1-17. https://doi.org/10.7203/relieve.23.1.9015
  • Greiff, S., Holt, D. V. y Funke, J. (2013). Perspectives on problem solving in educational assessment: analytical, interactive, and collaborative problem solving. Journal of Problem Solving, 5(2), 71-91.
  • Greiff, S., Wüstenberg, S. y Funke, J. (2012). Dynamic problem solving: A new assessment perspective. Applied Psychological Measurement, 36(3), 189-213. https://doi.org/10.1177/0146621612439620
  • Greiff, S., Wüstenberg, S., Molnár, G., Fischer, A., Funke, J. y Csapó, B. (2013). Complex Problem Solving in Educational Contexts. Something Beyond g: Concept, Assessment, Measurement Invariance, and Construct Validity. Journal of Educational Psychology, 105(2), 364–379. https://doi.org/10.1037/a0031856
  • Heintz, F., Mannila, L. y Färnqvist, T. (2016). A review of models for introducing computational thinking, computer science and computing in K-12 education [Comunicación]. Frontiers in Education Conference (FIE), Erie, Estados Unidos de América.
  • Herde, C. N., Wüstenberg, S. y Greiff, S. (2016). Assessment of complex problem solving: What we know and what we don’t know. Applied Measurement in Education, 29(4), 265-277. https://doi.org/10.1080/08957347.2016.1209208
  • Hsu, T. C., Chang, S. C. y Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310.
  • Huggins-Manley, A. C. y Algina, J. (2015). The Partial Credit Model and Generalized Partial Credit Model as Constrained Nominal Response Models, With Applications in Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 308-318. https://doi.org/10.1080/10705511.2014.937374
  • Koh, K. H., Nickerson, H., Basawapatna, A. y Repenning, A. (2014). Early validation of computational thinking pattern analysis [Comunicación]. 2014 Conference on Innovation and Technology in Computer Science Education, Colorado, Estados Unidos de América.
  • Kwisthout, J. (2012). Relevancy in problem solving: a computational framework. The Journal of Problem Solving, 5(1), 18-33.
  • Li, C. H. (2014). The performance of MLR, USLMV, and WLSMV estimation in structural regression models with ordinal variables. Michigan State University.
  • Lye, S. Y. y Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12?. Computers in Human Behavior, 41, 51-61.
  • OECD (2010). PISA 2012 field trial problem solving framework: Draft subject to possible revision after the field trial. Paris: OECD. Recuperado de http://www.oecd.org/pisa/pisaproducts/46962005.pdf.
  • Olea, J. y Ponsoda, V. (1998). Tests informatizados y adaptativos informatizados: investigación en España. Revista Electrónica de Investigación y Evaluación Educativa, 4(2), art1.
  • Ortega-Ruipérez, B. (2018). Pensamiento computacional y resolución de problemas. (Tesis doctoral). Universidad Autónoma de Madrid. UAM
  • Ortega-Ruipérez, B. y Asensio, M. (2018). Robótica DIY: pensamiento computacional para mejorar la resolución de problemas. RELATEC: Revista Latinoamericana de Tecnología Educativa, 17(2), 129-143.
  • Román, M. y Murillo, F. J. (2009). La evaluación de los aprendizajes escolares: un recurso estratégico para mejorar la calidad educativa, Revista Iberoamericana de Evaluación Educativa, 2(1), 4-9.
  • Román-González, M., Pérez-González, J. C., Moreno-León. y J., Robles, G., (2018). Can computational talent be detected? Predictive validity of the Computational Thinking Test. International Journal of Child-Computer Interaction, 18, 47-58.
  • Schleicher, A. (2006). Fundamentos y cuestiones políticas subyacentes al desarrollo de PISA. Revista de Educación, 26, 21-43.
  • Schoppek, W. (2002). Examples, rules, and strategies in the control of dynamic systems. Cognitive Science Quarterly, 2(1), 63-92.
  • Tang, X., Yin, Y., Lin, Q., Hadad, R. y Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
  • Wing, J. (2006). Computational thinking. Communications of the ACM, 49, 33-35.
  • Wing, J. (2014). Computational thinking benefits society. Social Issues in Computing. Academic Press.
  • Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. RED Revista de Educación a Distancia, 46(4).