Impacto de las emociones vertidas por diarios digitales en Twitter

  1. Sergio Arce-García 1
  2. Natalia Orviz-Martínez 1
  3. Tatiana Cuervo-Carabel 1
  1. 1 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

Revista:
El profesional de la información

ISSN: 1386-6710 1699-2407

Any de publicació: 2020

Títol de l'exemplar: Pluralismo informativo

Volum: 29

Número: 5

Tipus: Article

DOI: 10.3145/EPI.2020.SEP.20 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: El profesional de la información

Objectius de Desenvolupament Sostenible

Resum

The use of Twitter by newspapers is widespread and is a way to keep readers informed in real time. In this article, we analyze the discourse of the messages released by the ten main general information newspapers in Spain and the reac-tions they provoked on the social network. The objective is to analyze whether the emotional discourse of the news in each newspaper caused greater dissemination among and attention from users, as well as to determine the emotions and feelings expressed by them. To do so, news about important events such as court judgements, street riots, and general elections was followed between October and November 2019. A total of 124,897 tweets collected using machi-ne-learning techniques were analyzed by the application of algorithms which allowed the determination of emotions and valences of feelings. We carried out statistical studies and produced graphs showing the dependence between emo-tional variables and positive or negative sentimental valence. The results showed that, in general, newspapers do not use an excessive amount of emotional speech with the aim of impacting their public. However, differences were found among the newspapers in terms of trying to encourage reader loyalty. The reaction of the users was more linked to the informative facts themselves and the emotions they provoked than to the type of emotional and/or polarized discourse. The day-to-day information determines to a large extent what is consumed by Twitter users, in which changing modes of speech are observed depending on the editorial line of each newspaper.

Informació de finançament

Esta investigación ha sido parcialmente financiada por UNIR Research (http://research.unir.net), Universidad Internacional de La Rioja (UNIR, http://www.unir.net), dentro del Plan Propio de Investigación 2018-2020, Grupo de Investigación TR3s-i.

Finançadors

Referències bibliogràfiques

  • Araujo, Theo; Neijens, Peter; Vliegenthart, Rens (2015). “What motivates consumers to re-tweet brand content?”. Journal of advertising research, v. 55, n. 3, pp. 284-295. https://doi.org/10.2501/jar-2015-009
  • Arcila-Calderón, Carlos; Ortega-Mohedano, Félix; Jiménez-Amores, Javier; Trullenque, Sofía (2017). “Análisis supervisado de sentimientos políticos en español: clasificación en tiempo real de tweets basada en aprendizaje automático”. El profesional de la información, v. 26, n. 5, pp. 973-982. https://doi.org/10.3145/epi.2017.sep.18
  • Auxier, Brooke E.; Vitak, Jessica (2019). “Factors motivating customization and echo chamber creation within digital news environments”. Social media + society, v. 5, n. 2. https://doi.org/10.1177/2056305119847506
  • Baviera, Tomás (2018). “Influence in the political Twitter sphere: Authority and retransmission in the 2015 and 2016 Spanish general elections”. European journal of communication, v. 33, n. 3, pp. 321-337. https://doi.org/10.1177/0267323118763910
  • Berger, Jonah; Milkman, Katherine L. (2012). “What makes online content viral?”. Journal of marketing research, v. 49, n. 2, pp. 192-205. https://doi.org/10.1509/jmr.10.0353
  • Bravo-Márquez, Felipe; Mendoza, Marcelo; Poblete, Barbara (2014). “Meta-level sentiment models for big social data analysis”. Knowledge-based systems, n. 69, pp. 86-99. https://doi.org/10.1016/j.knosys.2014.05.016
  • Caldevilla-Domínguez, David; Rodríguez-Terceño, José; Barrientos-Báez, Almudena (2019). “El malestar social a través de las nuevas tecnologías: Twitter como herramienta política”. Revista latina de comunicación social, n. 74, pp. 1264-1290. http://www.revistalatinacs.org/074paper/1383/66es.html
  • Chang, Wei-Lun (2019). “The impact of emotion: A blended model to estimate influence on social media”. Information systems frontiers, v. 21, pp. 1137-1151. https://doi.org/10.1007/s10796-018-9824-0
  • Chowdhury, S. M. Mazharul; Ghosh, Priyanka; Abujar, Sheikh; Afrin, Arina; Akhter-Hossain, Syed (2018). “Sentiment analysis of tweet data: The study of sentimental state of human from tweet text”. In: Abraham, Ajith; Dutta, Paramartha; Kumar-Mandal, Jyotsna; Bhattacharya, Abhishek; Dutta, Suomi. Emerging technologies in data mining and information security. Springer Nature Singapore, pp. 3-14. ISBN: 978 981 13 1497 1 https://doi.org/10.1007/978-981-13-1498-8_1
  • CIS (2019). “Encuesta 3263. Pregunta 0005c: Periódico preferido para seguir la información política y electoral”. Macrobarómetro de octubre 2019. Preelectoral elecciones generales 2019, 1 octubre. Centro de Investigaciones Sociológicas. http://www.analisis.cis.es/cisdb.jsp
  • De-Vicente-Domínguez, Aída-María (2016). “Periodismo y redes sociales: piezas informativas producidas con Twitter”. En: Larrondo-Ureta, Ainara; Meso-Ayerdi, Koldobika; Peña-Fernández, Simón (eds.). 8º Congreso internacional de ciberperiodismo. El impacto de las audiencias en los perfiles profesionales y los contenidos. ISBN: 978 84 9082 468 9 https://web-argitalpena.adm.ehu.es/listaproductos.asp?IdProducts=USPDF164689
  • Denecke, Kerstin (2008). “Using SentiWordNet for multilingual sentiment analysis”. In: 2008 IEEE 24th International conference on data engineering workshop. https://doi.org/10.1109/ICDEW.2008.4498370
  • Díaz-Rangel, Ismael; Sidorov, Grigori; Suárez-Guerra, Sergio (2014). “Creación y evaluación de un diccionario marcado con emociones y ponderado para el español”. Onomázein, n. 29, pp. 31-46. https://doi.org/10.7764/onomazein.29.5
  • Doval-Avendaño, Montserrat (2017). “La creación de comunidad en Twitter alrededor de un medio inexistente, El español”. Estudios sobre el mensaje periodístico, v. 23, n. 1, pp. 391-408. https://doi.org/10.5209/ESMP.55603
  • Duffy, Andrew; Ling, Rich (2020). “The gift of news: Phatic news sharing on social media for social cohesion”. Journalism studies, v. 21, n. 1, pp. 72-87. https://doi.org/10.1080/1461670x.2019.1627900
  • Ekman, Paul (1992). “An argument for basic emotions”. Cognition and emotion, v. 6, n. 3, pp. 169-200. http://www.paulekman.com/wp-content/uploads/2013/07/An-Argument-For-Basic-Emotions.pdf
  • Elespanol.com (2019). “Revolución en Comscore: El español abre brecha como líder nativo digital y ya es un 80% de ‘El mundo’”. El español, 19 septiembre. https://cutt.ly/qgUwQxO
  • Elfenbein, Hillary-Anger; Ambady, Nalini (2003). “Universals and cultural differences in recognozing emotions”. Current directions in psychological science, v. 12, n. 5, pp. 159-164. https://doi.org/10.1111/1467-8721.01252
  • Fenoll, Vicente; Cárcamo-Ulloa, Luis; Sáez-Trumper, Diego (2018). “El uso de Twitter de los medios de comunicación españoles en período electoral”. Estudios sobre el mensaje periodístico, v. 24, n. 2, pp. 1223-1238. https://doi.org/10.5209/ESMP.62211
  • Fernández-Vallejo, Ana-María (2018). “Comunicar emociones en el discurso metapolítico de Twitter: el caso de #MADURO versus @NICOLASMADURO”. Observatorio (OBS*) Journal, v. 12, n. 3, pp. 175-194. https://doi.org/10.15847/obsOBS12320181214
  • Gil de Zúñiga, Homero; Diehl, Trevor (2017). “Citizenship, social media, and big data: Current and future research in the social sciences”. Social science computer review, v. 35, n. 1, pp. 3-9. https://doi.org/10.1177/0894439315619589
  • Gligorić, Kristina; Anderson, Ashton; West, Robert (2019). “Causal effects of brevity on style and success in social media”. In: Proceedings of the ACM on human-computer interaction, pp. 1-23. https://doi.org/10.1145/3359147
  • González-Fernandes, Sarita (2016). “Redes sociais: perdas e ganhos nas rotinas produtivas dos webjornalistas em meio à pressão do tempo”. En: Larrondo-Ureta, Ainara; Meso-Ayerdi, Koldobika; Peña-Fernández, Simón (eds.). 8º Congreso internacional de ciberperiodismo. El impacto de las audiencias en los perfiles profesionales y los contenidos. ISBN: 978 84 9082 468 9 https://web-argitalpena.adm.ehu.es/listaproductos.asp?IdProducts=USPDF164689
  • Gupta, Raj-Kumar; Yang, Yinping (2019). “Predicting and understanding news social popularity with emotional salience features”. In: Proceedings of the 27th ACM International conference on multimedia - MM’19. https://doi.org/10.1145/3343031.3351048
  • Karlsen, Rune (2015). “Followers are opinion leaders: The role of people in the flow of political communication on and beyond social networking sites”. European journal of communication, v. 30, n. 3, pp. 301-318. https://doi.org/10.1177/0267323115577305
  • Kaylor, Brian (2019). “Likes, retweets, and polarization”. Review & expositor, v. 116, n. 2, pp. 183-192. https://doi.org/10.1177/0034637319851508
  • Keib, Kate; Himelboim, Itai; Han, Jeong-Yeob (2018). “Important tweets matter: Predicting retweets in the #BlackLivesMatter talk on Twitter”. Computers in human behavior, v. 85, pp. 106-115. https://doi.org/10.1016/j.chb.2018.03.025
  • Kim, Hyun-Suk (2015). “Attracting views and going viral: How message features and news-sharing channels affect health news diffusion”. Journal of communication, v. 65, n. 3, pp. 512-534. https://doi.org/10.1111/jcom.12160
  • Klinger, Ulrike; Svensson, Jakob (2015). “The emergence of network media logic in political communication: A theoretical approach”. New media & society, v. 17, n. 8, pp. 1241-1257. https://doi.org/10.1177/1461444814522952
  • Lee-Burton, Jennifer; Mueller, Kristen M.; Gollins, Jan; Walls, Danielle M. (2019). “The impact of airing Super Bowl television ads early on social media”. Journal of advertising research, v. 59, n. 4, pp. 391-401. https://doi.org/10.2501/jar-2019-016
  • Levi, Simona (2019). #FakeYou, fake news y desinformación. Barcelona: Rayo Verde Ed. ISBN: 978 84 17925 06 2
  • Liang, Yuhua; Kee, Kerk F. (2018). “Developing and validating the A-B-C framework of information diffusion on social media”. New media & society, v. 20, n. 1, pp. 272-292. https://doi.org/10.1177/1461444816661552
  • Martínez-Cámara, Eugenio; Martín-Valdivia, María-Teresa; Ureña-López, Luis-Alfonso; Montejo-Ráez, Arturo (2012). “Sentiment analysis in Twitter”. Natural language engineering, v. 20, n. 1, pp. 1-28. https://doi.org/10.1017/s1351324912000332
  • Meng, Jingbo; Peng, Wei; Tan, Pang-Ning; Liu, Wuyu; Cheng, Ying; Bae, Arram (2018). “Diffusion size and structural virality: The effects of message and network features on spreading health information on Twitter”. Computers in human behavior, v. 89, pp. 111-120. https://doi.org/10.1016/j.chb.2018.07.039
  • Mohammad, Saif M.; Turney, Peter D. (2012). “Crowdsourcing a word-emotion association lexicon”. Computational intelligence, v. 29, n. 3, pp. 436-465. https://doi.org/10.1111/j.1467-8640.2012.00460.x
  • Molina-González, María-Dolores; Martínez-Cámara, Eugenio; Martín-Valdivia, María-Teresa (2015). “CRiSOL: Base de conocimiento de opiniones para El español”. Procesamiento del lenguaje natural, n. 55, pp. 143-150. http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5226
  • Nofer, Michael; Hinz, Oliver (2015). “Using Twitter to predict the stock market”. Business & information systems engineering, v. 57, n. 4, pp. 229-242. https://doi.org/10.1007/s12599-015-0390-4
  • Padilla-Herrada, María-Soledad (2016). “Marcadores y partículas discursivas interactivas en el entorno político/periodístico de Twitter”. Philologia hispalensis, v. 30, n. 1, pp. 193-212. https://doi.org/10.12795/PH.2016.i30.10
  • Pariser, Eli (2011). The filter bubble. Londres: Penguin Books. ISBN: 978 0 241954522
  • Plutchik, Robert (1980). “A general psychoevolutionary theory of emotion”. Emotion: Theory, research, and experience, v. 1, pp. 3-33. Academic Press. ISBN: 978 0 12 558701 3 https://doi.org/10.1016/B978-0-12-558701-3.50007-7
  • Sauter, Disa A.; Eisner, Frank; Ekman, Paul; Scott, Sophie K. (2010). “Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations”. Proceedings of the National Academy of Sciences of the United States of America, v. 107, n. 6, pp. 2408-2412. https://doi.org/10.1073/pnas.0908239106
  • Schober, Michael F.; Pasek, Josh; Guggenheim, Lauren; Lampe, Cliff; Conrad, Frederick G. (2016). “Social media analyses for social measurement”. Public opinion quarterly, v. 80, v. 1, pp. 180-211. https://doi.org/10.1093/poq/nfv048
  • Segado-Boj, Francisco; Díaz-Campo, Jesús; Navarro-Sierra, Nuria (2020). “Emociones y difusión de noticias sobre el cambio climático en redes sociales. Influencia de hábitos, actitudes previas y usos y gratificaciones en universitarios”. Revista latina de comunicación social, v. 75, pp. 245-269. https://doi.org/10.4185/RLCS-2020-1425
  • Segado-Boj, Francisco; Díaz-Campo, Jesús; Quevedo-Redondo, Raquel (2019). “Influence of the ‘News finds me’ perception on news sharing and news consumption on social media”. Communication today, v. 10, n. 2, pp. 90-104. https://www.communicationtoday.sk/wp-content/uploads/07.-SEGADO-BOJ-et-al.-%E2%80%93-CT-2-2019.pdf
  • Soria-Ibáñez, María-del-Mar (2015). “El uso de Twitter para analizar el activismo ciudadano: las noticias económicas de los principales periódicos de referencia nacional”. Estudios sobre el mensaje periodístico, v. 21, n. 1, pp. 103-121. https://doi.org/10.5209/rev_ESMP.2015.v21.n1.49113
  • Spohr, Dominic (2017). “Fake news and ideological polarization. Filter bubbles and selective exposure on social media”. Business information review, v. 34, n. 3, pp. 150-160. https://doi.org/10.1177/0266382117722446
  • Stieglitz, Stefan; Dang-Xuan, Linh (2013). “Emotions and information diffusion in social media - Sentiment of microblogs and sharing behavior”. Journal of management information systems, v. 29, n. 4, pp. 217-248. https://doi.org/10.2753/MIS0742-1222290408
  • Swati, Ubale; Pranali, Chilekar; Pragati, Sonkamble (2015). “Sentiment analysis of news articles using machine learning approach”. International journal of advances in electronics and computer science, v. 2, n. 4, pp. 114-116. http://www.iraj.in/journal/journal_file/journal_pdf/12-127-1430132488114-116.pdf
  • Taboada, Maite; Brooke, Julian; Tofiloski, Milan; Voll, Kimberli; Stede, Manfred (2011). “Lexicon-based methods for sentiment analysis”. Computational linguistics, v. 37, n. 2, pp. 267-307. https://doi.org/10.1162/coli_a_00049
  • Weeks, Brian E.; Holbert, R. Lance (2013). “Predicting dissemination of news content in social media: A focus on reception, friending, and partisanship”. Journalism & mass communication quarterly, v. 90, n. 2, pp. 212-232. https://doi.org/10.1177/1077699013482906
  • Yarnoz, Carlos (2019). “Tendencias y/o periodismo”. El país, Defensor del lector, 15 septiembre. https://elpais.com/elpais/2019/09/13/opinion/1568407417_139410.html
  • Zhu, Xun; Kim, Youllee; Park, Haseon (2019). “Do messages spread widely also diffuse fast? Examining the effects of message characteristics on information diffusion”. Computers in human behavior, v. 103, pp. 37-47. https://doi.org/10.1016/j.chb.2019.09.006