Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes

  1. Gélvez-García, Nancy Yaneth 1
  2. Díaz-M, Kevin C. 2
  3. Montenegro-Marín , Carlos Enrique
  4. Gaona-García , Paulo Alonso
  1. 1 Universidad Distrital Francisco José de Caldas
    info

    Universidad Distrital Francisco José de Caldas

    Bogotá, Colombia

    ROR https://ror.org/02jsxd428

  2. 2 Koncilia S.A.S
Revista:
Revista Vínculos: Ciencia, tecnología y sociedad

ISSN: 1794-211X 2322-939X

Año de publicación: 2022

Volumen: 19

Número: 2

Tipo: Artículo

Otras publicaciones en: Revista Vínculos: Ciencia, tecnología y sociedad

Resumen

This article shows a bibliographic review of the academic literature related to "Image classification with Multiview learning" together with an analysis of the information present in each of the reviewed bibliographic sources, to propose a conceptual basis, theoretical and statistical for research works that develop or contain this theme. In the same way, the way in which the MVL is approached in the different application scenarios, both academic and practical, is briefly presented.

Referencias bibliográficas

  • J. Zhao, X. Xijiong, X. Xin y S. Shiliang, “Multi-view learning overview: Recent progress and new challenges and new challenges” Information Fusion, pp. 43-54, 2017. https://doi.org/10.1016/j.inffus.2017.02.007
  • Ministerio de Ciencias de Colombia, “Modelo de clasificación de revistas científicas nacionales” 2021. [En línea]. Available: https://minciencias.gov.co/pagina/modelo-de-clasificacion-de-revistas-cientificas-nacionales
  • Scimago Lab, “Scimago Journal & Country Rank” 10 07 2021. [En línea]. Available: https://www.scimagojr.com/
  • L. Zhang, H. Shum, L. Liu, G. Guo y L. Shao, “Multiview discriminative marginal metric learning for makeup face verification”, Neurocomputing, pp. 339-350, 2019. https://doi.org/10.1016/j.neucom.2018.12.003
  • S. Sun, Y. Liu y L. Mao, “Multi-view learning for visual violence recognition with maximum entropy discrimination and deep features discrimination and deep features”, Information Fusion, pp. 43-53, 2018. https://doi.org/10.1016/j.inffus.2018.10.004
  • C. Xu, T. Dacheng y C. Xu, “A Survey on Multi-view Learning” arXiv.org, 2013.
  • C. Zhang, J. Cheng y Q. Tian, “Multi-View Image Classification with Visual, Semantic and View Consistency”, IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 29, pp. 617 - 627, 2019. https://doi.org/10.1109/TIP.2019.2934576
  • S. Zhu, X. Sun y D. Jin, “Multi-view semi-supervised learning for image classification”, Neurocomputing, pp. 136-142, 2016. https://doi.org/10.1016/j.neucom.2016.02.072
  • X. Zhang, J. Cheng, C. Xu, H. Lu y S. Ma, “Multi-view multi-label active learning for image classification”, 2009 IEEE International Conference on Multimedia and Expo, 03 07 2009.
  • M. Liu, Y. Luo, D. Tao, C. Xu y Y. Wen, “Low-Rank Multi-View Learning in Matrix Completion for Multi-Label Image Classification”, Twenty-Ninth AAAI Conference on Artificial Intelligence, vol. 29, nº 1, 2015. https://doi.org/10.1609/aaai.v29i1.9547
  • H. Su, S. Maji, E. Kalogerakis y E. L. Miller, “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, arXiv, 2015. https://doi.org/10.1109/ICCV.2015.114
  • M. Seeland y P. Mäder, “Multi-view classification with convolutional neural networks” PLOS ONE, 2020. https://doi.org/10.1371/journal.pone.0245230
  • K. Jia, J. Lin, M. Tan y D. Tao, “Deep Multi-View Learning using Neuron-Wise Correlation-Maximizing Regularizers”, 2019. https://doi.org/10.1109/TIP.2019.2912356
  • Y. Tuozhong, W. Wenfeng y G. Yuhong, “A Deep Multiview Active Learning for Large-Scale Image Classification”, Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/6639503
  • L. Sun, J. Wang, Z. Hu, Y. Xu y Z. Cui, “Multi-View Convolutional Neural Networks for Mammographic Image Classification” 2019. https://doi.org/10.1109/ACCESS.2019.2939167
  • M. Ángel Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, G. Mancilla Gaona, “State of the art in software defined networking (SDN)”, Visión electrónica, vol. 13, no. 1, pp. 178–194, 2019. https://doi.org/10.14483/22484728.14424
  • S. Sun, J. Shawe-Taylor y L. Mao, “PAC-Bayes analysis of multi-view learning”, Information Fusion, pp. 117-131, 2016. https://doi.org/10.1016/j.inffus.2016.09.008
  • Z. Xu y S. Sun, “Multi-source Transfer Learning with Multi-view Adaboost”, de International Conference on Neural Information Processing, Doha, Qatar, 2012. https://doi.org/10.1007/978-3-642-34487-9_41
  • Z. Ding, M. Shao y Y. Fu, “Robust Multi-view Representation: A Unified Perspective from Multi-view Learning to Domain Adaption”, de Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018. https://doi.org/10.24963/ijcai.2018/767
  • F. Wu, X. Y. Jing, X. You, D. Yue, R. Hu y J. Y. Yang, “Multi-view low-rank dictionary learning for image classification,” Pattern Recognition, pp. 143-154, 2015. https://doi.org/10.1016/j.patcog.2015.08.012
  • Y.-M. Xu, C.-D. Wang y J.-H. Lai, “Weighted Multi-view Clustering with Feature Selection”, Pattern Recognition, pp. 25-35, 2015. https://doi.org/10.1016/j.patcog.2015.12.007
  • D. Yu, S. Ji, J. Liu y S. Wei, “Automatic 3D building reconstruction from multi-view aerial images with deep learning”, ISPRS Journal of Photogrammetry and Remote Sensing, pp. 155-170, 2021. https://doi.org/10.1016/j.isprsjprs.2020.11.011
  • D. Wu, C. Zhang, L. Ji, R. Ran, H. Wu y Y. Xu, “Forest Fire Recognition Based on Feature Extraction from Multi-View Images”, Traitement du Signal, pp. 775-783, 2021. https://doi.org/10.18280/ts.380324
  • N. Khan, M. Kim y J. Tompkin, “Differentiable Diffusion for Dense Depth Estimation from Multi-view Images”, arXiv, 2021. https://doi.org/10.1109/CVPR46437.2021.00880
  • X. Yan, S. Hu, Y. Mao, Y. Ye y H. Yu, “Deep multi-view learning methods: A review”, Neurocomputing, pp. 106-129, 2021. https://doi.org/10.1016/j.neucom.2021.03.090
  • J. N. Oliver, “Multi-View Imaging: Depth Estimation and Enhancement", 2019. [En línea]. Available: https://dspace.uib.es/xmlui/handle/11201/150580
  • J. García, A. Gardel, I. Bravo y J. L. Lázaro, “Multiple View Oriented Matching Algorithm for People Reidentification”, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, pp. 1841 - 1851, 2014. https://doi.org/10.1109/TII.2014.2330976
  • B. Liu, A. Yu, X. Yu, R. Wang, K. Gao y W. Guo, “Deep Multiview Learning for Hyperspectral Image Classification”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pp. 7758 - 7772, 2021. https://doi.org/10.1109/TGRS.2020.3034133
  • Y. Zhao, Y.-m. Cheung, X. You, Q. Peng, J. Peng, P. Yuan y Y. Shi, “Hyperspectral Image Classification via Spatial Window-Based Multiview Intact Feature Learning”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pp. 2294 - 2306, 03 03 2021. https://doi.org/10.1109/TGRS.2020.3004858
  • K. Wong, E. Sinkovskaya, A. Abuhamad y T. Mahmood, “Multiview and Multiclass Image Segmentation using Deep Learning in Fetal Echocardiography” Proceedings of SPIE - The International Society for Optical Engineering, 2021. https://doi.org/10.1117/12.2582191
  • A. Li, J. Chen, D. Chen y G. Sun, “Multiview Similarity Learning for Robust Visual Clustering” de Computer Vision - ACCV 2020 Workshops: 15th Asian Conference on Computer Vision, Kyoto, Japan, Tokio, 2020. https://doi.org/10.1007/978-3-030-69756-3_12
  • F. Nie, G. Cai y X. Li, “Multi-View Clustering and Semi-Supervised Classification with Adaptive Neighbours” IEEE Transactions on Knowledge and Data Engineering, pp. 2389 - 2400, 2020. https://doi.org/10.1109/TKDE.2019.2920985
  • W. Liu y D. Tao, “Multiview Hessian Regularization for Image Annotation” IEEE Transactions on Image Processing, 2019.
  • D. Li y Y. Tian, “Multi-view metric learning for multi-instance image classification” Expert Systems with Applications, 2021.
  • F. Nie, G. Cai, J. Li y X. Li, “Auto-Weighted Multi-View Learning for Image Clustering and Semi-Supervised Classification” IEEE Transactions on Image Processing, pp. 1501 - 1511, 2018. https://doi.org/10.1109/TIP.2017.2754939
  • C. Du, C. Du, L. Huang y H. He, “Reconstructing Perceived Images from Human Brain Activities with Bayesian Deep Multiview Learning” IEEE Transactions on Neural Networks and Learning Systems, pp. 1-14, 2018.
  • M. Mayo y E. Frank, “Experiments with Multi-view Multi-instance Learning for Supervised Image Classification”, 2011.
  • C. Yan, B. Gong, Y. Wei y Y. Gao, “Deep Multi-View Enhancement Hashing for Image Retrieval”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
  • J. Yu, J. Li, Z. Yu y Q. Huang, “Multimodal Transformer with Multi-View Visual Representation for Image Captioning”, IEEE Transactions on Circuits and Systems for Video Technology, p. 4467-4480, 2020. https://doi.org/10.1109/TCSVT.2019.2947482
  • Z. Xue, G. Li y Q. Huang, “Joint Multi-View Representation Learning and Image Tagging”, de Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016. https://doi.org/10.1609/aaai.v30i1.10147
  • J. Li, B. Zhang, G. Lu y D. Zhang, “Generative multi-view and multi-feature learning for classification”, Information Fusion, pp. 215-226, 2019. https://doi.org/10.1016/j.inffus.2018.02.005
  • Y. Liu, S. Sun y M. Yin, “Multi-view Learning and Deep Learning for Microscopic Neuroblastoma Pathology Image Diagnosis”, de Pacific Rim International Conference on Artificial Intelligence, 2018. https://doi.org/10.1007/978-3-319-97304-3_42
  • X. Dong, S. Xu, Y. Liu, A. Wang, M. I. Saripan, L. Li, X. Zhang y L. Lu, “Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation”, Cancer imaging, 2020. https://doi.org/10.1186/s40644-020-00331-0
  • M. Kan, S. Shan y X. Chen, “Multi-view Deep Network for Cross-view Classification”, de 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. https://doi.org/10.1109/CVPR.2016.524
  • W. Wang, R. Arora, K. Livescu y J. Bilmes, “On Deep Multi-View Representation Learning: Objectives and Optimization”, de ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015.
  • B. Neva Camacho, O. Najar Sánchez, "Comprensión de la lectura crítica con el edublog Leanet", Revista Vínculos, vol. 16, no. 2, pp. 219–231, 2019. https://doi.org/10.14483/2322939X.15750
  • Z. Zhu, P. Luo, X. Wang y X. Tang, “Multi-View Perceptron: A Deep Model for Learning Face Identity and View Representations”, de NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2015.
  • M. T. Alam, V. Kumar y A. Kumar, “A Multi-view Convolutional Neural Network Approach for Image Data Classification”, de 2021 International Conference on Communication information and Computing Technology (ICCICT), 2021. https://doi.org/10.1109/ICCICT50803.2021.9509943
  • X. Wu, Q.-G. Chen, Y. Hu, D. Wang y X. Chang, “Multi-View Multi-Label Learning with View-Specific Information Extraction”, de IJCAI'19: Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019. https://doi.org/10.24963/ijcai.2019/539
  • J. Wang, Y. Zheng, J. Song y S. Hou, “Cross-View Representation Learning for Multi-View Logo Classification with Information Bottleneck”, 2021. https://doi.org/10.1145/3474085.3475704
  • A. Huang, Z. Wang, Y. Zheng, T. Zhao y C.-W. Lin, “Embedding Regularizer Learning for Multi-View Semi-Supervised Classification”, pp. 6997-7011, 2021. https://doi.org/10.1109/TIP.2021.3101917
  • E. Gómez Luna, D. Fernando Navas, G. Aponte Mayor y L. A. Betancourt Buitrago, “Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización”, Dyna, vol. 81, nº 184, pp. 158-163, 2014. https://doi.org/10.15446/dyna.v81n184.37066