Fighting disinformation with artificial intelligencefundamentals, advances and challenges

  1. Montoro-Montarroso, Andrés 1
  2. Cantón-Correa, Javier 2
  3. Rosso, Paolo 3
  4. Chulvi, Berta 3
  5. Panizo-Lledot, Ángel 4
  6. Huertas-Tato, Javier 4
  7. Calvo-Figueras, Blanca 5
  8. Rementeria, M. José 5
  9. Gómez-Romero, Juan 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 Universidad de Granada / Universidad Internacional de La Rioja
  3. 3 Universidad Politécnica de Valencia
    info

    Universidad Politécnica de Valencia

    Valencia, España

    ROR https://ror.org/01460j859

  4. 4 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  5. 5 Centro Nacional de Supercomputación
    info

    Centro Nacional de Supercomputación

    Barcelona, España

    ROR https://ror.org/05sd8tv96

Journal:
El profesional de la información

ISSN: 1386-6710 1699-2407

Year of publication: 2023

Issue Title: Network activisms

Volume: 32

Issue: 3

Type: Article

DOI: 10.3145/EPI.2023.MAY.22 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: El profesional de la información

Abstract

Internet and social media have revolutionised the way news is distributed and consumed. However, the constant flow of massive amounts of content has made it difficult to discern between truth and falsehood, especially in online platforms plagued with malicious actors who create and spread harmful stories. Debunking disinformation is costly, which has put artificial intelligence (AI) and, more specifically, machine learning (ML) in the spotlight as a solution to this problem. This work revises recent literature on AI and ML techniques to combat disinformation, ranging from automatic classification to feature extraction, as well as their role in creating realistic synthetic content. We conclude that ML advances have been mainly focused on automatic classification and scarcely adopted outside research labs due to their dependence on limited-scope datasets. Therefore, research efforts should be redirected towards developing AI-based systems that are reliable and trustworthy in supporting humans in early disinformation detection instead of fully automated solutions. 

Bibliographic References

  • Afroz, Sadia; Brennan, Michael; Greenstadt, Rachel (2012). “Detecting hoaxes, frauds, and deception in writing style online”. In: IEEE symposium on security and privacy, pp. 461-475. https://doi.org/10.1109/SP.2012.34
  • Aggarwal, Charu C. (2011). “An introduction to social network data analytics”. In: Aggarwal, Charu C. (ed.). Social network data analytics. Springer. https://doi.org/10.1007/978-1-4419-8462-3
  • Amador, Julio; Molina-Solana, Miguel; Gómez-Romero, Juan (2019). “Towards easy-to-implement misinformation automatic detection for online social media”. In: Proceedings of the conference for truth and trust online 2019. https://doi.org/10.36370/tto.2019.4
  • Arnold, Phoebe (2020). “The challenges of online fact checking”. Full fact, 17 December. https://fullfact.org/blog/2020/dec/the-challenges-of-online-fact-checking-how-technology-can-and-cant-help
  • Azevedo, Lucas; D’Aquin, Mathieu; Davis, Brian; Zarrouk, Manel (2021). “LUX (linguistic aspects under examination): discourse analysis for automatic fake news classification”. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 41-56. https://doi.org/10.18653/v1/2021.findings-acl.4
  • Barabási, Albert-László (2016). Network science. Cambridge University Press. ISBN: 978 1 107 07626 6 http://networksciencebook.com
  • Bedi, Punam; Sharma, Chhavi (2016). “Community detection in social networks”. Wiley interdisciplinary reviews: Data mining and knowledge discovery, v. 6, n. 3, pp. 115-135. https://doi.org/10.1002/widm.1178
  • Bishop, Christopher M. (2006). Pattern recognition and machine learning. Springer. ISBN: 978 0 387 31073 2 https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
  • Blondel, Vincent D.; Guillaume, Jean-Loup; Lambiotte, Renaud; Lefebvre, Etienne (2008). “Fast unfolding of communities in large networks”. Journal of statistical mechanics: theory and experiment, n. 10, pp. P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
  • Bondielli, Alessandro; Marcelloni, Francesco (2019). “A survey on fake news and rumour detection techniques”. Information sciences, v. 497, pp. 38-55. https://doi.org/10.1016/j.ins.2019.05.035
  • Bonet-Jover, Alba; Piad-Morffis, Alejandro; Saquete, Estela; Martínez-Barco, Patricio; García-Cumbreras, Miguel-Ángel (2021). “Exploiting discourse structure of traditional digital media to enhance automatic fake news detection”. Expert systems with applications, v. 169, 114340. https://doi.org/10.1016/j.eswa.2020.114340
  • Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel; Krueger, Gretchen; Henighan, Tom; Child, Rewon; Ramesh, Aditya; Ziegler, Daniel M.; Wu, Jeffrey; Winter, Clemens; Hesse, Christopher; Chen, Mark; Sigler, Eric; Litwin, Mateusz; Gray, Scott; Chess, Benjamin; Clark, Jack; Berner, Christopher; McCandlish, Sam; Radford, Alec; Sutskever, Ilya; Amodei, Dario (2020). “Language models are few-shot learners”. Advances in neural information processing systems, v. 33, pp. 1877-1901.
  • Buda, Jakab; Bolonyai, Flora (2020). “An ensemble model using n-grams and statistical features to identify fake news spreaders on Twitter”. In: Working notes of CLEF 2020 - Conference and labs of the evaluation forum, v. 2696. https://ceur-ws.org/Vol-2696/paper_189.pdf
  • Camacho, David; Panizo-Lledot, Ángel; Bello-Orgaz, Gema; González-Pardo, Antonio; Cambria, Erik (2020). “The four dimensions of social network analysis: an overview of research methods, applications, and software tools”. Information fusion, v. 63, pp. 88-120. https://doi.org/10.1016/j.inffus.2020.05.009
  • Cambria, Erik; Wang, Haixun; White, Bebo (2014). “Guest editorial: big social data analysis”. Knowledge-based systems, v. 69. https://doi.org/10.1016/j.knosys.2014.07.002
  • Castelo, Sonia; Almeida, Thais; Elghafari, Anas; Santos, Aécio; Pham, Kien; Nakamura, Eduardo; Freire, Juliana (2019). “A topic-agnostic approach for identifying fake news pages”. In: Companion proceedings of the 2019 World Wide Web conference, pp. 975-980. https://doi.org/10.1145/3308560.3316739
  • Dagar, Deepak; Vishwakarma, Dinesh K. (2022). “A literature review and perspectives in deepfakes: generation, detection, and applications”. International journal of multimedia information retrieval, v. 11, n. 3, pp. 219-289. https://doi.org/10.1007/s13735-022-00241-w
  • Das, Anubrata; Liu, Houjiang; Kovatchev, Venelin; Lease, Matthew (2023). “The state of human-centered NLP technology for fact-checking”. Information processing & management, v. 60, n. 2, 103219. https://doi.org/10.1016/j.ipm.2022.103219
  • Davis, Clayton-Allen; Varol, Onur; Ferrara, Emilio; Flammini, Alessandro; Menczer, Filippo (2016). “BotOrNot: a system to evaluate social bots”. In: Proceedings of the 25th International conference companion on World Wide Web, pp. 273-274. https://doi.org/10.1145/2872518.2889302
  • Della-Vedova, Marco L.; Tacchini, Eugenio; Moret, Stefano; Ballarin, Gabriele; DiPierro, Massimo; De-Alfaro, Luca (2018). “Automatic online fake news detection combining content and social signals”. In: 22nd Conference of open innovations association (Fruct), pp. 272-279. https://doi.org/10.23919/FRUCT.2018.8468301
  • De-Souza, Mariana C.; Nogueira, Bruno-Magalhães; Rossi, Rafael-Geraldeli; Marcacini, Ricardo-Marcondes; Dos-Santos, Brucce-Neves; Rezende, Solange-Oliveira (2022). “A network-based positive and unlabeled learning approach for fake news detection”. Machine learning, v. 111, n. 10, pp. 3549-3592. https://doi.org/10.1007/s10994-021-06111-6
  • Del-Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter (2016). “Echo chambers: emotional contagion and group polarization on facebook”. Scientific reports, v. 6, 37825. https://doi.org/10.1038/srep37825
  • Des-Mesnards, Nicolas-Guenon; Hunter, David-Scott; El-Hjouji, Zakaria; Zaman, Tauhid (2022). “Detecting bots and assessing their impact in social networks”. Operations research, v. 70, n. 1. https://doi.org/10.1287/opre.2021.2118
  • Dong, Xishuang; Victor, Uboho; Qian, Lijun (2020). “Two-path deep semisupervised learning for timely fake news detection”. IEEE transactions on computational social systems, v. 7, n. 6, pp. 1386-1398. https://doi.org/10.1109/TCSS.2020.3027639
  • Ferrara, Emilio; Varol, Onur; Davis, Clayton; Menczer, Filippo; Flammini, Alessandro (2016). “The rise of social bots”. Communications of the ACM, v. 59, n. 7, pp. 96-104. https://doi.org/10.1145/2818717
  • Fortunato, Santo (2010). “Community detection in graphs”. Physics reports, v. 486, n. 3-5, pp. 75-174. https://doi.org/10.1016/j.physrep.2009.11.002
  • Ghanem, Bilal; Ponzetto, Simone P.; Rosso, Paolo; Rangel, Francisco (2021). “FakeFlow: fake news detection by modeling the flow of affective information”. In: Proceedings of the 16th Conference of the European chapter of the Association for Computational Linguistics, pp. 679-689. https://doi.org/10.18653/v1/2021.eacl-main.56
  • Giachanou, Anastasia; Ghanem, Bilal; Ríssola, Esteban A.; Rosso, Paolo; Crestani, Fabio; Oberski, Daniel (2022). “The impact of psycholinguistic patterns in discriminating between fake news spreaders and fact checkers”. Data & knowledge engineering, v. 138, 101960. https://doi.org/10.1016/j.datak.2021.101960
  • Giachanou, Anastasia; Rosso, Paolo; Crestani, Fabio (2019). “Leveraging emotional signals for credibility detection”. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval, pp. 877-880. https://doi.org/10.1145/3331184.3331285
  • Giachanou, Anastasia; Rosso, Paolo; Crestani, Fabio (2021). “The impact of emotional signals on credibility assessment”. Journal of the Association for Information Science and Technology, v. 72, n. 9, pp. 1117-1132. https://doi.org/10.1002/asi.24480
  • Giachanou, Anastasia; Zhang, Guobiao; Rosso, Paolo (2020). “Multimodal multi-image fake news detection”. In: IEEE 7th International conference on data science and advanced analytics (DSAA), pp. 647-654. https://doi.org/10.1109/DSAA49011.2020.00091
  • Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). Deep learning. MIT Press. ISBN: 978 0 262 035613
  • Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014). “Generative adversarial nets”. Advances in neural information processing systems, v. 27. https://papers.nips.cc/paper/5423-generative-adversarial-nets
  • Graves, Lucas (2018). Understanding the promise and limits of automated fact-checking. Reuters Institute, University of Oxford. https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2018-02/graves_factsheet_180226%20FINAL.pdf
  • Graves, Lucas; Nyhan, Brendan; Reifler, Jason (2016). “Understanding innovations in journalistic practice: a field experiment examining motivations for fact-checking”. Journal of communication, v. 66, n. 1, pp. 102-138. https://doi.org/10.1111/jcom.12198
  • Greengard, Samuel (2019). “Will deepfakes do deep damage?”. Communications of the ACM, v. 63, n. 1, pp. 17-19. https://doi.org/10.1145/3371409
  • Grinberg, Nir; Joseph, Kenneth; Friedland, Lisa; Swire-Thompson, Briony; Lazer, David (2019). “Fake news on Twitter during the 2016 U.S. presidential election”. Science, v. 363, n. 6425, pp. 374-378. https://doi.org/10.1126/science.aau2706
  • Guo, Bin; Ding, Yasan; Yao, Lina; Liang, Yunji; Yu, Zhiwen (2020). “The future of false information detection on social media: new perspectives and trends”. ACM computing surveys, v. 53, n. 4. https://doi.org/10.1145/3393880
  • Guo, Zhijiang; Schlichtkrull, Michael; Vlachos, Andreas (2022). “A survey on automated fact-checking”. Transactions of the Association for Computational Linguistics, v. 10, pp. 178-206. https://doi.org/10.1162/tacl_a_00454
  • Hangloo, Sakshini; Arora, Bhavna (2022). “Combating multimodal fake news on social media: methods, datasets, and future perspective”. Multimedia systems, v. 28, n. 6, pp. 2391-2422. https://doi.org/10.1007/s00530-022-00966-y
  • Harrigan, Paul; Daly, Timothy M.; Coussement, Kristof; Lee, Julie A.; Soutar, Geoffrey N.; Evers, Uwana (2021). “Identifying influencers on social media”. International journal of information management, v. 56, 102246. https://doi.org/10.1016/j.ijinfomgt.2020.102246
  • Jing, Jing; Wu, Hongchen; Sun, Jie; Fang, Xiaochang; Zhang, Huaxiang (2023). “Multimodal fake news detection via progressive fusion networks”. Information processing & management, v. 60, n. 1, 103120. https://doi.org/10.1016/j.ipm.2022.103120
  • John, Oliver P.; Srivastava, Sanjay (1999). “The big five trait taxonomy: history, measurement, and theoretical perspectives”. In: Pervin, Lawrence A.; John, Oliver P. (eds.). Handbook of personality: Theory and research, pp. 102-138. https://pages.uoregon.edu/sanjay/pubs/bigfive.pdf
  • Kang, SeongKu; Hwang, Junyoung; Yu, Hwanjo (2020). “Multi-modal component embedding for fake news detection”. In: 14th international conference on ubiquitous information management and communication (Imcom). https://doi.org/10.1109/IMCOM48794.2020.9001800
  • Karras, Tero; Aila, Timo; Laine, Samuli; Lehtinen, Jaakko (2018). “Progressive growing of GANs for improved quality, stability, and variation”. In: 6th International conference on learning representations. https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
  • Karras, Tero; Laine, Samuli; Aila, Timo (2019). “A style-based generator architecture for generative adversarial networks”. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp. 4396-4405. https://doi.org/10.1109/CVPR.2019.00453
  • Kartal, Yavuz-Selim; Kutlu, Mucahid (2023). “Re-think before you share: a comprehensive study on prioritizing check-worthy claims”. IEEE transactions on computational social systems, v. 10, n. 1, pp. 362-375. https://doi.org/10.1109/TCSS.2021.3138642
  • Khattar, Dhruv; Goud, Jaipal-Singh; Gupta, Manish; Varma, Vasudeva (2019). “MVAE: multimodal variational autoencoder for fake news detection”. In: The World Wide Web conference, pp. 2915-2921. https://doi.org/10.1145/3308558.3313552
  • Konstantinovskiy, Lev; Price, Oliver; Babakar, Mevan; Zubiaga, Arkaitz (2021). “Toward automated factchecking: developing an annotation schema and benchmark for consistent automated claim detection”. Digital threats: research and practice, v. 2, n. 2. https://doi.org/10.1145/3412869
  • Kudugunta, Sneha; Ferrara, Emilio (2018). “Deep neural networks for bot detection”. Information sciences, v. 467, pp. 312-322. https://doi.org/10.1016/j.ins.2018.08.019
  • La-Barbera, David; Roitero, Kevin; Mizzaro, Stefano (2022). “A hybrid human-in-the-loop framework for fact checking”. In: Proceedings of the 6th Workshop on natural language for artificial intelligence (NL4AI 2022), v. 3287. https://ceur-ws.org/Vol-3287/paper4.pdf
  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). “Deep learning”. Nature, v. 521, n. 7553, pp. 436-444. https://doi.org/10.1038/nature14539
  • Li, Dun; Guo, Haimei; Wang, Zhenfei; Zheng, Zhiyun (2021). “Unsupervised fake news detection based on autoencoder”. IEEE access, v. 9, pp. 29356-29365. https://doi.org/10.1109/ACCESS.2021.3058809
  • Li, Shuo; Yao, Tao; Li, Saifei; Yan, Lianshan (2022). “Semantic‐enhanced multimodal fusion network for fake news detection”. International journal of intelligent systems, v. 37, n. 12, pp. 12235-12251. https://doi.org/10.1002/int.23084
  • Li, Xin; Lu, Peixin; Hu, Lianting; Wang, Xiao-Guang; Lu, Long (2022). “A novel self-learning semi-supervised deep learning network to detect fake news on social media”. Multimedia tools and applications, v. 81, n. 14, pp. 19341-19349. https://doi.org/10.1007/s11042-021-11065-x
  • Liu, Yang; Wu, Yi-Fang (2018). “Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks”. Proceedings of the AAAI conference on artificial intelligence, v. 32, n. 1, pp. 354-361. https://doi.org/10.1609/aaai.v32i1.11268
  • Liu, Yang; Xu, Songhua (2016). “Detecting rumors through modeling information propagation networks in a social media environment”. IEEE transactions on computational social systems, v. 3, n. 2, pp. 46-62. https://doi.org/10.1109/TCSS.2016.2612980
  • Manning, Christopher D.; Schütze, Hinrich (1999). Foundations of statistical natural language processing. MIT Press. ISBN: 978 0 262 133609
  • Marcus, Gary (2022). “AI platforms like chatGPT are easy to use but also potentially dangerous”. Scientific American, 19 December. https://www.scientificamerican.com/article/ai-platforms-like-chatgpt-are-easy-to-use-but-also-potentially-dangerous
  • Martín, Alejandro; Huertas-Tato, Javier; Huertas-García, Álvaro; Villar-Rodríguez, Guillermo; Camacho, David (2022). “FacTeR-check: semi-automated fact-checking through semantic similarity and natural language inference”. Knowledge-based systems, v. 251, 109265. https://doi.org/10.1016/j.knosys.2022.109265
  • Masood, Momina; Nawaz, Mariam; Malik, Khalid M.; Javed, Ali; Irtaza, Aun; Malik, Hafiz (2022). “Deepfakes generation and detection: state-of-the-art, open challenges, countermeasures, and way forward”. Applied intelligence, v. 54, pp. 3974-4026. https://doi.org/10.1007/s10489-022-03766-z
  • Meel, Priyanka; Vishwakarma, Dinesh K. (2020). “Fake news, rumor, information pollution in social media and web: a contemporary survey of state-of-the-arts, challenges and opportunities”. Expert systems with applications, v. 153, 112986. https://doi.org/10.1016/j.eswa.2019.112986
  • Meel, Priyanka; Vishwakarma, Dinesh K. (2021). “A temporal ensembling based semi-supervised convnet for the detection of fake news articles”. Expert systems with applications, v. 177, 115002. https://doi.org/10.1016/j.eswa.2021.115002
  • Megahed, Fadel M.; Chen, Ying-Ju; Ferris, Joshua A.; Knoth, Sven; Jones-Farmer, L. Allison (2023). “How generative AI models such as chatGPT can be (mis)used in SPC practice, education, and research? An exploratory study”. ArXiv. https://doi.org/10.48550/arXiv.2302.10916
  • Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey (2013). “Efficient estimation of word representations in vector space”. In: 1st International conference on learning representations (ICLR). https://arxiv.org/abs/1301.3781
  • Mirsky, Yisroel; Lee, Wenke (2022). “The creation and detection of deepfakes”. ACM computing surveys, v. 54, n. 1. https://doi.org/10.1145/3425780
  • Mitchell, Eric; Lee, Yoonho; Khazatsky, Alexander; Manning, Christopher D.; Finn, Chelsea (2023). “DetectGPT: zero-shot machine-generated text detection using probability curvature”. ArXiv. https://doi.org/10.48550/arXiv.2301.11305
  • Molina-Solana, Miguel; Amador, Julio; Gómez-Romero, Juan (2018). “Deep learning for fake news classification”. In: I Workshop on deep learning, pp. 1197-1201. https://sci2s.ugr.es/caepia18/proceedings/docs/CAEPIA2018_paper_207.pdf
  • Nakamura, Kai; Levy, Sharon; Wang, William Y. (2020). “Fakeddit: a new multimodal benchmark dataset for fine-grained fake news detection”. In: Proceedings of the 12th International conference on language resources and evaluation, pp. 6149-6157. https://aclanthology.org/2020.lrec-1.755.pdf
  • Nakov, Preslav; Corney, David; Hasanain, Maram; Alam, Firoj; Elsayed, Tamer; Barrón-Cedeño, Alberto; Papotti, Paolo; Shaar, Shaden; Da-San-Martino, Giovanni (2021). “Automated fact-checking for assisting human fact-checkers”. In: Proceedings of the Thirtieth international joint conference on artificial intelligence (IJCAI), pp. 4551-4558. https://doi.org/10.24963/ijcai.2021/619
  • Nakov, Preslav; Da-San-Martino, Giovanni; Elsayed, Tamer; Barrón-Cedeño, Alberto; Míguez, Rubén; Shaar, Shaden; Alam, Firoj; Haouari, Fatima; Hasanain, Maram; Mansour, Watheq; Hamdan, Bayan; Ali, Zien-Sheikh; Babulkov, Nikolay; Nikolov, Alex; Shahi, Gautam-Kishore; Struß, Julia-Maria; Mandl, Thomas; Kutlu, Mucahid; Kartal, Yavuz-Selim (2021). “Overview of the clef-2021 checkthat! Lab on detecting check-worthy claims, previously fact-checked claims, and fake news”. In: International conference of the cross-language evaluation forum for European languages. Experimental IR meets multilinguality, multimodality, and interaction, pp. 264-291. https://doi.org/10.1007/978-3-030-85251-1_19
  • Newman, Mark E. J. (2004). “Fast algorithm for detecting community structure in networks”. Physical review E, v. 69, n. 6, 066133. https://doi.org/10.1103/PhysRevE.69.066133
  • Oehmichen, Axel; Hua, Kevin; Amador, Julio; Molina-Solana, Miguel; Gómez-Romero, Juan; Guo, Yi-ke (2019). “Not all lies are equal. A study into the engineering of political misinformation in the 2016 US presidential election”. IEEE access, v. 7, pp. 126305-126314. https://doi.org/10.1109/ACCESS.2019.2938389
  • Paka, William-Scott; Bansal, Rachit; Kaushik, Abhay; Sengupta, Shubhashis; Chakraborty, Tanmoy (2021). “Cross-sean: a cross-stitch semi-supervised neural attention model for Covid-19 fake news detection”. Applied soft computing, v. 107. https://doi.org/10.1016/j.asoc.2021.107393
  • Pasi, Gabriella; De-Grandis, Marco; Viviani, Marco (2020). “Decision making over multiple criteria to assess news credibility in microblogging sites”. In: IEEE International conference on fuzzy systems (FUZZ-IEEE). https://doi.org/10.1109/FUZZ48607.2020.9177751
  • Pennebaker, James W.; Boyd, Ryan L.; Jordan, Kayla; Blackburn, Kate (2015). The development and psychometric properties of LIWC2015. Austin, TX: University of Texas at Austin. https://repositories.lib.utexas.edu/handle/2152/31333
  • Pennington, Jeffrey; Socher, Richard; Manning, Christopher (2014). “GloVe: global vectors for word representation”. In: Proceedings of the 2014 Conference on empirical methods in natural language processing (Emnlp), pp. 1532-1543. https://doi.org/10.3115/v1/D14-1162
  • Qi, Peng; Cao, Juan; Yang, Tianyun; Guo, Junbo; Li, Jintao (2019). “Exploiting multi-domain visual information for fake news detection”. In: IEEE International conference on data mining (ICDM), pp. 518-527. https://doi.org/10.1109/ICDM.2019.00062
  • Rana, Md-Shohel; Nobi, Mohammad-Nur; Murali, Beddhu; Sung, Andrew H. (2022). “Deepfake detection: a systematic literature review”. IEEE access, v. 10, pp. 25494-25513. https://doi.org/10.1109/ACCESS.2022.3154404
  • Rashkin, Hannah; Choi, Eunsol; Jang, Jin Y.; Volkova, Svitlana; Choi, Yejin (2017). “Truth of varying shades: analyzing language in fake news and political fact-checking”. In: Proceedings of the 2017 Conference on empirical methods in natural language processing, pp. 2931-2937. https://doi.org/10.18653/v1/D17-1317
  • Rath, Bhavtosh; Salecha, Aadesh; Srivastava, Jaideep (2022). “Fake news spreader detection using trust-based strategies in social networks with bot filtration”. Social network analysis and mining, v. 12, n. 66. https://doi.org/10.1007/s13278-022-00890-z
  • Ruffo, Giancarlo; Semeraro, Alfonso; Giachanou, Anastasia; Rosso, Paolo (2023). “Studying fake news spreading, polarisation dynamics, and manipulation by bots: a tale of networks and language”. Computer science review, v. 47, 100531. https://doi.org/10.1016/j.cosrev.2022.100531
  • Russell, Stuart; Norvig, Peter (2020). Artificial intelligence: a modern approach. Pearson Series. ISBN: 978 0 134 610993
  • Saif, Shahela; Tehseen, Samabia (2022). “Deepfake videos: synthesis and detection techniques - a survey”. Journal of intelligent and fuzzy systems, v. 42, n. 4, pp. 2989-3009. https://doi.org/10.3233/JIFS-210625
  • Schuster, Tal; Schuster, Roei; Shah, Darsh J.; Barzilay, Regina (2020). “The limitations of stylometry for detecting machine-generated fake news”. Computational linguistics, v. 46, n. 2, pp. 499-510. https://doi.org/10.1162/coli_a_00380
  • Serengil, Sefik I.; Ozpinar, Alper (2021). “HyperExtended lightface: a facial attribute analysis framework”. In: International conference on engineering and emerging technologies (Iceet). https://doi.org/10.1109/ICEET53442.2021.9659697
  • Serrano-Guerrero, Jesús; Olivas, José A.; Romero, Francisco P.; Herrera-Viedma, Enrique (2015). “Sentiment analysis: a review and comparative analysis of web services”. Information sciences, v. 311, pp. 18-38. https://doi.org/10.1016/j.ins.2015.03.040
  • Shabani, Shaban; Charlesworth, Zarina; Sokhn, Maria; Schuldt, Heiko (2021). “SAMS: human-in-the-loop approach to combat the sharing of digital misinformation”. CEUR workshop proceedings, v. 2846. https://ceur-ws.org/Vol-2846/paper27.pdf
  • Shao, Chengcheng; Ciampaglia, Giovanni-Luca; Varol, Onur; Yang, Kai-Cheng; Flammini, Alessandro; Menczer, Filippo (2018). “The spread of low-credibility content by social bots”. Nature communications, v. 9, n. 1, pp. 4787. https://doi.org/10.1038/s41467-018-06930-7
  • Shao, Chengcheng; Hui, Pik-Mai; Wang, Lei; Jiang, Xinwen; Flammini, Alessandro; Menczer, Filippo; Ciampaglia, Giovanni-Luca (2018). “Anatomy of an online misinformation network”. Plos one, v. 13, n. 4, e0196087. https://doi.org/10.1371/journal.pone.0196087
  • Shrestha, Anu; Spezzano, Francesca (2022). “Characterizing and predicting fake news spreaders in social networks”. International journal of data science and analytics, v. 13, n. 4, pp. 385-398. https://doi.org/10.1007/s41060-021-00291-z
  • Shu, Kai; Sliva, Amy; Wang, Suhang; Tang, Jiliang; Liu, Huan (2017). “Fake news detection on social media: a data mining perspective”. ACM SIGKDD explorations newsletter, v. 19, n. 1, pp. 22-36. https://doi.org/10.1145/3137597.3137600
  • Shu, Kai; Wang, Suhang; Liu, Huan (2019). “Beyond news contents: the role of social context for fake news detection”. In: Proceedings of the 12th ACM International conference on web search and data mining, pp. 312-320. https://doi.org/10.1145/3289600.3290994
  • Shu, Kai; Zhou, Xinyi; Wang, Suhang; Zafarani, Reza; Liu, Huan (2019). “The role of user profiles for fake news detection”. In: Proceedings of the 2019 IEEE/ACM International conference on advances in social networks analysis and mining, pp. 436-439. https://doi.org/10.1145/3341161.3342927
  • Simko, Jakub; Racsko, Patrik; Tomlein, Matus; Hanakova, Martina; Moro, Robert; Bielikova, Maria (2021). “A study of fake news reading and annotating in social media context”. New review of hypermedia and multimedia, v. 27, n. 1-2, pp. 97-127. https://doi.org/10.1080/13614568.2021.1889691
  • Singh, Prabhav; Srivastava, Ridam; Rana, K. P. S.; Kumar, Vineet (2023). “SEMI-fnd: stacked ensemble based multimodal inferencing framework for faster fake news detection”. Expert systems with applications, v. 215, 119302. https://doi.org/10.1016/j.eswa.2022.119302
  • Solaiman, Irene; Brundage, Miles; Clark, Jack; Askell, Amanda; Herbert-Voss, Ariel; Wu, Jeff; Radford, Alec; Krueger, Gretchen; Kim, Jong-Wook; Kreps, Sarah; McCain, Miles; Newhouse, Alex; Blazakis, Jason; McGuffie, Kris; Wang, Jasmine (2019). “Release strategies and the social impacts of language models”. ArXiv. https://doi.org/10.48550/arXiv.1908.09203
  • Song, Chenguang; Teng, Yiyang; Zhu, Yangfu; Wei, Siqi; Wu, Bin (2022). “Dynamic graph neural network for fake news detection”. Neurocomputing, v. 505, pp. 362-374. https://doi.org/10.1016/j.neucom.2022.07.057
  • Srinivas, P. Y. K. L.; Das, Amitava; Pulabaigari, Viswanath (2022). “Fake spreader is narcissist; real spreader is Machiavellian prediction of fake news diffusion using psycho-sociological facets”. Expert systems with applications, v. 207, 117952. https://doi.org/10.1016/j.eswa.2022.117952
  • Stella, Massimo; Ferrara, Emilio; De-Domenico, Manlio (2018). “Bots increase exposure to negative and inflammatory content in online social systems”. Proceedings of the National Scademy of Sciences, v. 115, n. 49, pp. 12435-12440. https://doi.org/10.1073/pnas.1803470115
  • Tacchini, Eugenio; Ballarin, Gabriele; Della-Vedova, Marco L.; Moret, Stefano; De-Alfaro, Luca (2017). “Some like it hoax: automated fake news detection in social networks”. In: CEUR Workshop proceedings, v. 1960. https://arxiv.org/abs/1704.07506
  • Thorne, James; Vlachos, Andreas (2018). “Automated fact checking: task formulations, methods and future directions”. In: Proceedings of the 27th International conference on computational linguistics, pp. 3346-3359. https://aclanthology.org/C18-1283
  • Tolosana, Rubén; Vera-Rodríguez, Rubén; Fierrez, Julián; Morales, Aythami; Ortega-García, Javier (2020). “Deepfakes and beyond: a survey of face manipulation and fake detection”. Information fusion, v. 64, pp. 131-148. https://doi.org/10.1016/j.inffus.2020.06.014
  • Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.; Kaiser, Łukasz; Polosukhin, Illia (2017). “Attention is all you need”. In: 31st Conference on neural information processing systems. https://papers.neurips.cc/paper/7181-attention-is-all-you-need.pdf
  • Vogel, Inna; Meghana, Meghana (2020). “Fake news spreader detection on Twitter using character n-grams”. In: CEUR Workshop proceedings, v. 2696. https://ceur-ws.org/Vol-2696/paper_59.pdf
  • Vosoughi, Soroush; Roy, Deb; Aral, Sinan (2018). “The spread of true and false news online”. Science, v. 359, n. 6380, pp. 1146-1151. https://doi.org/10.1126/science.aap9559
  • Wang, Tingting; Liu, Hongyan; He, Jun; Du, Xiaoyong (2013). “Mining user interests from information sharing behaviors in social media”. In: Pacific-Asia conference on knowledge discovery and data mining, pp. 85-98. https://doi.org/10.1007/978-3-642-37456-2_8
  • Wang, William Y. (2017). “‘Liar, liar pants on fire’: a new benchmark dataset for fake news detection”. In: 55th Annual meeting of the Association for Computational Linguistics, v. 2, pp. 422-426. https://doi.org/10.18653/v1/P17-2067
  • Wang, Yaqing; Ma, Fenglong; Jin, Zhiwei; Yuan, Ye; Xun, Guangxu; Jha, Kishlay; Su, Lu; Gao, Jing (2018). “EANN: event adversarial neural networks for multi-modal fake news detection”. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 849-857. https://doi.org/10.1145/3219819.3219903
  • Wardle, Claire; Derakhshan, Hossein (2017). Information disorder: toward an interdisciplinary framework for research and policy making. Council of Europe report. https://rm.coe.int/information-disorder-toward-an-interdisciplinary-framework-for-researc/168076277c
  • Xiong, Shufeng; Zhang, Guipei; Batra, Vishwash; Xi, Lei; Shi, Lei; Liu, Liangliang (2023). “Trimoon: two-round inconsistency-based multi-modal fusion network for fake news detection”. Information fusion, v. 93, pp. 150-158. https://doi.org/10.1016/j.inffus.2022.12.016
  • Xu, Fan; Sheng, Victor S.; Wang, Mingwen (2023). “A unified perspective for disinformation detection and truth discovery in social sensing: a survey”. ACM computing surveys, v. 55, n. 1. https://doi.org/10.1145/3477138
  • Yang, Jing; Vega-Oliveros, Didier; Seibt, Tais; Rocha, Anderson (2021). “Scalable fact-checking with human-in-the-loop”. In: IEEE International workshop on information forensics and security (WIFS). https://doi.org/10.1109/WIFS53200.2021.9648388
  • Yang, Shuo; Shu, Kai; Wang, Suhang; Gu, Renjie; Wu, Fan; Liu, Huan (2019). “Unsupervised fake news detection on social media: a generative approach”. Proceedings of the AAAI Conference on artificial intelligence, v. 33, n. 1, pp. 5644-5651. https://doi.org/10.1609/aaai.v33i01.33015644
  • Yin, Zhijun; Cao, Liangliang; Gu, Quanquan; Han, Jiawei (2012). “Latent community topic analysis”. ACM transactions on intelligent systems and technology, v. 3, n. 4. https://doi.org/10.1145/2337542.2337548
  • Zhang, Guobiao; Giachanou, Anastasia; Rosso, Paolo (2022). “SceneFND: multimodal fake news detection by modelling scene context information”. Journal of information science, Online first. https://doi.org/10.1177/01655515221087683
  • Zhang, Xichen; Ghorbani, Ali A. (2020). “An overview of online fake news: characterization, detection, and discussion”. Information processing and management, v. 57, n. 2. https://doi.org/10.1016/j.ipm.2019.03.004
  • Zhou, Xinyi; Jain, Atishay; Phoha, Vir V.; Zafarani, Reza (2020). “Fake news early detection”. Digital threats: research and practice, v. 1, n. 2. https://doi.org/10.1145/3377478
  • Zhou, Xinyi; Zafarani, Reza (2020). “A survey of fake news: fundamental theories, detection methods, and opportunities”. ACM computing surveys, v. 53, n. 5. https://doi.org/10.1145/3395046
  • Zhu, Q.; Luo, J. (2022). “Generative pre-trained transformer for design concept generation: an exploration”. Proceedings of the design society, v. 2, pp. 1825-1834. https://doi.org/10.1017/pds.2022.185