Altmetrics can capture research evidencean analysis across types of studies in COVID-19 literature

  1. Pilar Valderrama-Baca 1
  2. Wenceslao Arroyo-Machado 1
  3. Daniel Torres-Salinas 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revue:
El profesional de la información

ISSN: 1386-6710 1699-2407

Année de publication: 2023

Titre de la publication: Digital native media ecosystem

Volumen: 32

Número: 2

Type: Article

DOI: 10.3145/EPI.2023.MAR.13 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: El profesional de la información

Résumé

COVID-19 has greatly impacted science. It has become a global research front that constitutes a unique phenomenon of interest for the scientometric community. Accordingly, there has been a proliferation of descriptive studies on COVID-19 papers using altmetrics. Social media metrics serve to elucidate how research is shared and discussed, and one of the key points is to determine which factors are well-conditioned altmetric values. The main objective of this study is to analyze whether the altmetric mentions of COVID-19 medical studies are associated with the type of study and its level of evidence. Data were collected from the PubMed and Altmetric.com databases. A total of 16,672 study types (e.g., case reports, clinical trials, or meta-analyses) that were published in the year 2021 and that had at least one altmetric mention were retrieved. The altmetric indicators considered were Altmetric Attention Score (AAS), news mentions, Twitter mentions, and Mendeley readers. Once the dataset of COVID-19 had been created, the first step was to carry out a descriptive study. Then, a normality hypothesis was evaluated by means of the Kolmogorov–Smirnov test, and since this was significant in all cases, the overall comparison of groups was performed using the nonparametric Kruskal–Wallis test. When this test rejected the null hypothesis, pairwise comparisons were performed with the Mann–Whitney Utest, and the intensity of the possible association was measured using Cramer’s V coefficient. The results suggest that the data do not fit a normal distribution. The Mann–Whitney U test revealed coincidences in five groups of study types: The altmetric indicator with most coincidences was news mentions, and the study types with the most coincidences were the systematic reviews together with the meta-analyses, which coincided with four altmetric indicators. Likewise, between the study types and the altmetric indicators, a weak but significant association was observed through the chi-square and Cramer’s V. It can thus be concluded that the positive association between altmetrics and study types in medicine could reflect the level of the "pyramid" of scientific evidence.

Références bibliographiques

  • Arieta-Miranda, Jessica M.; Ruiz-Yasuda, Catherine C.; Pérez-Vargas, Luis-Fernando; Torres-Ricse, Dayhanne A.; Díaz, Solange-Pérez; Arieta, Yosseline-Chávez; Victorio, Daniel-José-Blanco; Ramos, Gilmer-Torres (2022). “New pyramid proposal for the levels of scientific evidence according to SIGN”. Plastic and reconstructive surgery, v. 149, n. 4, pp. 841e-843e. https://doi.org/10.1097/PRS.0000000000008946
  • Aristovnik, Aleksander; Ravšelj, Dejan; Umek, Lan (2020). “A bibliometric analysis of COVID-19 across science and social science research landscape”. Sustainability, v. 12, n. 21. https://doi.org/10.3390/su12219132
  • Arroyo-Machado, Wenceslao; Torres-Salinas, Daniel; Robinson-García, Nicolás (2021). “Identifying and characterizing social media communities: A socio-semantic network approach to altmetrics”. Scientometrics, v. 126, n. 11, pp. 9267-9289. https://doi.org/10.1007/s11192-021-04167-8
  • Arsenault, Benoit J. (2022). “From the garden to the clinic: How Mendelian randomization is shaping up atherosclerotic cardiovascular disease prevention strategies”. European heart journal, v. 43, n. 42, pp. 4447-4449. https://doi.org/10.1093/eurheartj/ehac394
  • Bhandari, Mohit; Montori, Victor M.; Devereaux, Philip J.; Wilczynski, Nancy L.; Morgan, Douglas; Haynes, R. Brian (2004). “Doubling the impact: Publication of systematic review articles in orthopaedic journals”. JBJS, v. 86, n. 5. https://journals.lww.com/jbjsjournal/Fulltext/2004/05000/Doubling_the_Impact__Publication_of_Systematic.19.aspx
  • Brainard, Jeffrey (2021). “No revolution: COVID-19 boosted open access, but preprints are only a fraction of pandemic papers”. Science, 8 Sept. https://doi.org/10.1126/science.acx9058
  • Chriscaden, Kimberly (2020). Impact of COVID-19 on people’s livelihoods, their health and our food systems. World Health Organization. https://www.who.int/news/item/13-10-2020-impact-of-COVID-19-on-people’s-livelihoods-their-health-and-our-food-systems
  • Colavizza, Giovanni (2020). “COVID-19 research in Wikipedia”. Quantitative science studies, v. 1, n. 4, pp. 1349-1380. https://doi.org/10.1162/qss_a_00080
  • Colavizza, Giovanni; Costas, Rodrigo; Traag, Vincent A.; Van-Eck, Nees-Jan; Van-Leeuwen, Thed; Waltman, Ludo (2021). “A scientometric overview of CORD-19”. PLoS one, v. 16, n. 1, e0244839. https://doi.org/10.1371/journal.pone.0244839
  • Fassin, Yves (2021). “Research on COVID-19: A disruptive phenomenon for bibliometrics”. Scientometrics, v. 126, n. 6, pp. 5305-5319. https://doi.org/10.1007/s11192-021-03989-w
  • Fraumann, Grisha; Colavizza, Giovanni (2022). “The role of blogs and news sites in science communication during the COVID-19 pandemic”. Frontiers in research metrics and analytics, v. 7. https://www.frontiersin.org/articles/10.3389/frma.2022.824538
  • Harris, Joshua D.; Quatman, Carmen E.; Manring, Maurice M.; Siston, Robert A.; Flanigan, David C. (2014). “How to write a systematic review”. The American journal of sports medicine, v. 42, n. 11, pp. 2761-2768. https://doi.org/10.1177/0363546513497567
  • Haunschild, Robin; Bornmann, Lutz (2021). “Can tweets be used to detect problems early with scientific papers? A case study of three retracted COVID-19/SARS-CoV-2 papers”. Scientometrics, v. 126, n. 6, pp. 5181-5199. https://doi.org/10.1007/s11192-021-03962-7
  • Haustein, Stefanie; Costas, Rodrigo; Larivière, Vincent (2015). “Characterizing social media metrics of scholarly papers: The effect of document properties and collaboration patterns”. PLoS one, v. 10, n. 3, e0120495. https://doi.org/10.1371/journal.pone.0120495
  • Hayawi, K.; Shahriar, S.; Serhani, M. A.; Taleb, I.; Mathew, S. S. (2022). “ANTi-Vax: A novel Twitter dataset for COVID-19 vaccine misinformation detection”. Public health, v. 203, pp. 23-30. https://doi.org/10.1016/j.puhe.2021.11.022
  • Jung, Richard G.; Di-Santo, Pietro; Clifford, Cole; Prosperi-Porta, Graeme; Skanes, Stephanie; Hung, Annie; Parlow, Simon; Visintini, Sarah; Ramírez, F. Daniel; Simard, Trevor; Hibbert, Benjamin (2021). “Methodological quality of COVID-19 clinical research”. Nature communications, v. 12, n. 1, pp. 943. https://doi.org/10.1038/s41467-021-21220-5
  • Kousha, Kayvan; Thelwall, Mike (2020). “COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts”. Quantitative science studies, v. 1, n. 3, pp. 1068-1091. https://doi.org/10.1162/qss_a_00066
  • Kowalczyk, Nina; Truluck, Christina (2013). “Literature reviews and systematic reviews: What is the difference?”. Radiologic technology, v. 85, n. 2, pp. 219-222. http://www.radiologictechnology.org/content/85/2/219.extract
  • Lazcano-Ponce, Eduardo; Salazar-Martínez, Eduardo; Gutiérrez-Castrellón, Pedro; Ángeles-Llerenas, Angélica; Hernández-Garduño, Adolfo; Viramontes, José-Luis (2004). “Ensayos clínicos aleatorizados: Variantes, métodos de aleatorización, análisis, consideraciones éticas y regulación”. Salud pública de México, v. 46, n. 6, pp. 559-584. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342004000600012
  • Majumder, Maimuna S.; Mandl, Kenneth D. (2020). “Early in the epidemic: Impact of preprints on global discourse about COVID-19 transmissibility”. The lancet global health, v. 8, n. 5, pp. e627-e630. https://doi.org/10.1016/S2214-109X(20)30113-3
  • Marcec, Robert; Likic, Robert (2022). “Using Twitter for sentiment analysis towards AstraZeneca/Oxford, Pfizer/BioNTech and Moderna COVID-19 vaccines”. Postgraduate medical journal, v. 98, n. 1161, pp. 544-550. https://doi.org/10.1136/postgradmedj-2021-140685
  • Montori, Victor M.; Wilczynski, Nancy L.; Morgan, Douglas; Haynes, R. Brian; The Hedges Team (2003). “Systematic reviews: A cross-sectional study of location and citation counts”. BMC medicine, v. 1, n. 1, article 2. https://doi.org/10.1186/1741-7015-1-2
  • Murad, M. Hassan; Asi, Noor; Alsawas, Mouaz; Alahdab, Fares (2016). “New evidence pyramid”. Evidence based medicine, v. 21, pp. 125-127. https://doi.org/10.1136/ebmed-2016-110401
  • Nane, Gabriela F.; Robinson-García, Nicolás; Van-Schalkwyk, François; Torres-Salinas, Daniel (2022). “COVID-19 and the scientific publishing system: Growth, open access and scientific fields”. Scientometrics, v. 128, pp. 345-362. https://doi.org/10.1007/s11192-022-04536-x
  • Odone, Anna; Salvati, Stefano; Bellini, Lorenzo; Bucci, Daria; Capraro, Michele; Gaetti, Giovanni; Amerio, Andrea; Signorelli, Carlo (2020). “The runaway science: A bibliometric analysis of the COVID-19 scientific literature”. Acta bio-medica: Atenei Parmensis, v. 91, n. 9-S, pp. 34-39. https://doi.org/10.23750/abm.v91i9-S.10121
  • Okike, Kanu; Kocher, Mininder S.; Torpey, Jennifer L.; Nwachukwu, Benedict U.; Mehlman, Charles T.; Bhandari, Mohit (2011). “Level of evidence and conflict of interest disclosure associated with higher citation rates in orthopedics”. Journal of clinical epidemiology, v. 64, n. 3, pp. 331-338. https://doi.org/10.1016/j.jclinepi.2010.03.019
  • Patsopoulos, Nikolaos A.; Analatos, Apostolos A.; Ioannidis, John P. (2005). “Relative citation impact of various study designs in the health sciences”. JAMA, v. 293, n. 19, pp. 2362. https://doi.org/10.1001/jama.293.19.2362
  • Pinho-Gomes, Ana-Catarina; Peters, Sanne; Thompson, Kelly; Hockham, Carinna; Ripullone, Katherine; Woodward, Mark; Carcel, Cheryl (2020). “Where are the women? Gender inequalities in COVID-19 research authorship”. BMJ global health, v. 5, n. 7, e002922. https://doi.org/10.1136/bmjgh-2020-002922
  • Priem, Jason (2014). “Beyond bibliometrics: Harnessing multidimensional indicators of performance”. In: Cronin, Blaise; Sugimoto, Cassidy R. (eds.). Altmetrics in the wild: Using social media to explore scholarly impact, pp. 263-287). MIT Press. https://arxiv.org/html/1203.4745
  • Röhrig, Bernd; Du-Prel, Jean-Baptist; Wachtlin, Daniel; Blettner, Maria (2009). “Types of study in medical research: Part 3 of a series on evaluation of scientific publications”. Deutsches Arzteblatt International, v. 106, n. 15, pp. 262-268. https://doi.org/10.3238/arztebl.2009.0262
  • Torres-Salinas, Daniel (2020). “Ritmo de crecimiento diario de la producción científica sobre COVID-19. Análisis en bases de datos y repositorios en acceso abierto”. Profesional de la información, v. 29, n. 2, e290215. https://doi.org/10.3145/epi.2020.mar.15
  • Torres-Salinas, Daniel; Robinson-García, Nicolás; Castillo-Valdivieso, Pedro A. (2020). Open access and altmetrics in the pandemic age: Forecast analysis on COVID-19 literature. bioRxiv. https://doi.org/10.1101/2020.04.23.057307
  • Valderrama, Pilar; Baca, Pilar; Solana, Carmen; Ferrer-Luque, Carmen-María (2021). “Root canal disinfection articles with the highest relative citation ratios. A Bibliometric analysis from 1990 to 2019”. Antibiotics, v. 10, n. 11, 1412. https://doi.org/10.3390/antibiotics10111412
  • Valderrama, Pilar; Torres-Salinas, Daniel (2022). “Does the type of study on COVID-19 influence the value of altmetrics?”. In: Robinson-García, Nicolás; Torres-Salinas, Daniel; Arroyo-Machado, Wenceslao (eds.). STI 2022 Conference Proceedings. Zenodo. https://doi.org/10.5281/zenodo.6957471
  • Van-Schalkwyk, François; Dudek, Jonathan (2022). “Reporting preprints in the media during the COVID-19 pandemic”. Public understanding of science, v. 31, n. 5, pp. 608-616. https://doi.org/10.1177/09636625221077392
  • Van-Schalkwyk, François; Dudek, Jonathan; Costas, Rodrigo (2020). “Communities of shared interests and cognitive bridges: The case of the anti-vaccination movement on Twitter”. Scientometrics, v. 152, n. 2, pp. 1499-1516. https://doi.org/10.1007/s11192-020-03551-0
  • Zahedi, Zohreh; Costas, Rodrigo; Wouters, Paul (2014). “How well developed are altmetrics? A cross-disciplinary analysis of the presence of ‘alternative metrics’ in scientific publications”. Scientometrics, v. 101, n. 2, pp. 1491-1513. https://doi.org/10.1007/s11192-014-1264-0
  • Zhang, Lin; Zhao, Wenjing; Sun, Beibei; Huang, Ying; Glänzel, Wolfgang (2020). “How scientific research reacts to international public health emergencies: A global analysis of response patterns”. Scientometrics, v. 124, n. 1, pp. 747-773. https://doi.org/10.1007/s11192-020-03531-4
  • Zhang, Yi; Cai, Xiaojing; Fry, Caroline V.; Wu, Mengjia; Wagner, Caroline S. (2021). “Topic evolution, disruption and resilience in early COVID-19 research”. Scientometrics, v. 126, n. 5, pp. 4225-4253. https://doi.org/10.1007/s11192-021-03946-7