Ìndices de Desempeño de Robots Manipuladores: una revisión del Estado del Arte

  1. Héctor A. Moreno 1
  2. Roque Saltaren 1
  3. Isela Carrera 1
  4. Lisandro Puglisi 1
  5. Rafael Aracil 1
  1. 1 Centro de Automática y Robótica
    info

    Centro de Automática y Robótica

    Madrid, España

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Ano de publicación: 2012

Volume: 9

Número: 2

Páxinas: 11-122

Tipo: Artigo

DOI: 10.1016/J.RIAI.2012.02.005 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Revista iberoamericana de automática e informática industrial ( RIAI )

Obxectivos de Desenvolvemento Sustentable

Resumo

The performance indices are important tools for motion planning and design of robot manipulators. In this paper we present a collection of some of the performance indices that have generated interest in the robotics community. These indices are four different types: kinetostatic performance indices, dynamic performance indices, indices of joint limits, and finally global performance indices. In addition, we review the strategies that have been proposed to solve the problems that occur when the units of the Jacobian matrix elements are not homogeneous. At the end of this paper, we propose a set of global performance indices that can be useful in the design of robot manipulators.

Referencias bibliográficas

  • Alba, O. Wenger, P. y. P. J., 2005. Consistent kinetostatic indices for planar 3- dof parallel manipulators, application to the optimal kinematic inversion. In: Proceedings of the ASME DETC. pp. 765–774.
  • Angeles, J., 2007. Fundamentals of Robotic Mechanical Systems, Theory, Methods, and Algorithms. Springer.
  • Asada, H., 1983. A geometrical representation of manipulator dynamics and its application to arm design. Journal of Dynamic Systems, Measurement, and Control 150 (3), 131–142.
  • Baron, L., May 2000. A joint-limit avoidance strategy for arc-welding robots. In: International Conference on Integrated Design and Manufacturing in Mechanical Engineering.
  • Baron L. y Bernier, G., 2001. The design of parallel manipulators of star topology under isotropic constraint. In: Proc. DETC ASME.
  • Bestard, J. y Wiens, G., Jun. 2007. Manipulability based path and traj planning for hybrid mobility climbing. In: 12th IFToMM World Cong
  • Bicchi, A. Melchiorri, C. y. B. D., 1995. On the mobility and manipulabi general multiple limb robots. IEEE Transactions on Robotics and Au tion 11 (2), 215–228.
  • Bonev, I. y Ryu, J., 2001. A new approach to orientation workspace an of 6-dof parallel manipulators. Trans. ASME, Journal of Mechanical D 36 (1), 15–28.
  • Carretero, J. Ñahon, M. P. R., 2000. Workspace analysis and optimizat a novel 3-dof parallel manipulator. International Journal of Robotic Automation 15 (4), 178–188.
  • Chablat, D. Wenger, P., 2003. Architecture optimization of a 3-dof p mechanism for machining applications, the orthoglide. IEEE Transa on Robotics and Automation 19 (3), 403–410.
  • Chablat, D. Wenger, P. C. S. y. A. J., 2002. The isoconditioning loci of three-dof parallel manipulators. In: Proc. DETC ASME.
  • Chablat, D. Wenger, P. y. A. J., 1998a. The isoconditioning loci of a of closed-chain manipulators. In: Proc. IEEE International Conferen Robotics and Automation. pp. 1970–1976.
  • Chablat, D. Wenger, P. y. A. J., 1998b. Working modes and aspects in parallel manipulators. In: Proc. IEEE International Conference on Ro and Automation. pp. 1964–1969.
  • Chiu, S., 1988. Task compatibility of manipulator postures. The Interna Journal of Robotics Research 7 (5), 13–21.
  • Craig, J., 2005. Introduction to Robotics. Prentice Hall.
  • Di Gregorio, R., 2006. Dynamic model and performances of 2-dof man tors. Robotica 24 (1), 51–60.
  • Di Gregorio, R. y Parenti-Castelli, V., 2002. Dynamic performance indic 3-dof parallel manipulators. In: Proc. Advances in Robot Kinematic 11–20.
  • Doty, K. Melchiorri, C. y. B. C., 1993. A theory of generalized inverse a to robotics. Int. J. Robot. Res 12 (1), 1–19.
  • Gosselin, C., 1990a. Dexterity indices for planar and spatial robotic m lators. In: IEEE International Conference on Robotics and Automatio 650 –655 vol.1.
  • Gosselin, C. y. A. J., 1990b. Kinematic inversion of parallel manipulat the presence of incompletely specified tasks. ASME J. Mechanical D 112 (4), 494–500.
  • Gosselin, C. y Angeles, J., 1991. A global performance index for the kine optimization of robotic manipulators. J. Mech. Des. 113 (3), 220–226
  • Graettinger, T. y Krogh, B., 1988. The acceleration radius: a global perform measure for robotic manipulators. Journal of Dynamic Systems, Me ment, and Control 4 (1), 60–69.
  • Huang, T. y Whitehouse, D., 1998. Local dexterity, optimal architectu optimal design of parallel machine tools. Ann. CIRP 47 (1), 347–351
  • Huang, T. Li, M. L. Z. C. D. y. W. D., 2004. Optimal kinematic design of parallel manipulators with well-shaped workspace bounded by a spe conditioning index. IEEE Transactions on Robotics and Automation 2 538 – 543.
  • Huo, L. y Baron, L., 2011. The self-adaptation of weights for joint-limi singularity avoidances of functionally redundant robotic-task. Roboti Computer-Integrated Manufacturing 27 (2), 367 – 376.
  • Khatib, O. y Burdick, J., 1987. Optimization of dynamics in manip design: The operational space formulation. The International Jour Robotics and Automation 2 (2), 90–98.
  • Khatib, O., 1980. Commande dynamique dans l’espace operational des manipulateurs en presence d’obstacles. Ph.D. thesis, Ecole Nationa perieure de l’Aeronautique et de L’Espace, Touluse, France.
  • Kim, S. y Ryu, J., 2003. New dimensionally homogeneous jacobian matr mulation by three end-effector points for optimal design of parallel m lators. IEEE Transactions on Robotics and Automation 19 (4), 731–7
  • Klein, C. y Blaho, B., 1987. Dexterity measures for the design and c of kinematically redundant manipulators. International Journal of Ro Research 6 (2), 72–83.
  • Kumar, A. y Waldron, K., 1985. The workspaces of a mechanical manip Trans. ASME, Journal of Mechanical Design 4 (2), 3–9.
  • Li, Z. y Sastry, S., Feb. 1988. Task-oriented optimal grasping by multifin robot hands. IEEE Journal of Robotics and Automation 4 (1), 32 –44.
  • Li, J. Wang, S. W. X. y. H. C., 2010. Optimization of a novel mechanis a minimally invasive surgery robot. Int. J. Med. Robotics Comput. A Surg. 6 (1), 8390.
  • Li, M. Huang, T. Z. D., 2005. Conceptual design and dimensional synthesis of a reconfigurable hybrid robot. ASME J Manufact Sci Eng 127 (3), 647–653.
  • Liegeois, A., 1977. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man and Cybernetics 7 (12), 868–871.
  • Lipkin, H. y Duffy, J., 1989. Hybrid twist and wrench control of a robotic manipulator. ASME J. Mechanisms Transmissions Automation Des. 110, 110– 144.
  • Ma, O. y Angeles, J., 1991a. The concept of dynamic isotropy and its applications to inverse kinematics and trajectory planning. In: Proceedings 1991 IEEE International Conference on Robotics and Automation.
  • Ma, O. y Angeles, J., 1991b. Optimum architecture design of platform manipulators. In: Fifth International Conference on Advanced Robotics, 1991. ’Robots in Unstructured Environments’. pp. 1130 –1135 vol.2.
  • Merlet, J., 2007. Jacobian, manipulability, condition number and accuracy of parallel robots. In: Robotics Research. Vol. 28. pp. 175–184.
  • Merlet, J. P., 2006. Parallel Robots. Springer.
  • Moreno, H. A. y Pamanes, J., 2011. Isotropic design of a 2 dof parallel kinematic machine with a translational workpiece table. In: 13th IFToMM World Congress in Mechanism and Machine Science.
  • Moreno, H. Pamanes, J. W. P. y. C. D., 2006. Global optimization of performance of a 2prr parallel manipulator for cooperative tasks. In: ICINCORA’06. pp. 516–522.
  • Moreno, H. Saltaren, R. P. J. y. A. R., 2010. Motion strategy for the climbing robot on a metallic orthogonal structure. In: Proceedings of the 13th International Conference on Climbing and Walking Robots. pp. 1161–1168.
  • Pamanes, A. y Zeghloul, S., Apr. 1991. Optimal placement of robotic manipulators using multiple kinematic criteria. In: Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on. pp. 933 –938 vol.1.
  • Park, F. y Kim, J., 1998. Manipulability of closed kinematic chains. J. Mech. Des. 120 (4), 542–548.
  • Pámanes, J., 1992. Contribution à l’ etude de l’accessibilité aux tâches et à la détermination du placement optimal de robots manipulateurs. Ph.D. thesis, Université de Poitiers, Poitiers, France.
  • Salisbury, K. y Craig, J., 1982. Articulated hands: force and kinematic issues. The Int. J. of Robotic Research 1 (1), 4–17.
  • Saltaren, R., Sabater, J. M., Yime, E., Azorin, J. M., Aracil, R., Garcia, N., 2007. Performance evaluation of spherical parallel platforms for humanoid robots. Robotica 25 (3), 257–267.
  • Ueberle, M., Mock, N., Buss, M., 2004. Vishard10, a novel hyper-redundant haptic interface. In: Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. pp. 58 – 65.
  • Voglewede, P. y Ebert-Uphoff, I., 2004. Measuring c¸loseness”to singularities for parallel manipulators. In: Proc. IEEE International Conference on Robotics and Automation. pp. 4539–4544.
  • Wen, J.T.-Y. y Wilfinger, L., Jun. 1999. Kinematic manipulability of general constrained rigid multibody systems. IEEE Transactions on Robotics and Automation 15 (3), 558 –567.
  • Yoshikawa, T., 1985a. Dynamic manipulability of robot manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation. pp. 1033 – 1038.
  • Yoshikawa, T., 1985b. Manipulability of robotic mechanisms. The International Journal of Robotics Research 4 (2), 3–9.
  • Yoshikawa, T., 1990. Foundations of Robotics: Analysis and Control. The MIT Press.
  • Zanganeh, K. y Angeles, J., 1997. Kinematic isotropy and the optimum design of parallel manipulators. Int. J. Robot. Res. 16 (2), 185–197.