ANÁLISIS DINÁMICO Y APLICACIONES DE MÉTODOS ITERATIVOS DE RESOLUCIÓN ECUACIONES NO LINEALES.

  1. Chicharro López, Francisco Israel
Dirigida por:
  1. Juan Ramón Torregrosa Sánchez Director/a
  2. Alicia Cordero Barbero Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 25 de mayo de 2017

Tribunal:
  1. Pedro Alonso Velázquez Presidente/a
  2. Eulalia Martínez Molada Secretario/a
  3. Cristina Chiralt Monleón Vocal

Tipo: Tesis

Resumen

Numerosos problemas de la ciencia, la ingeniería o la economía requieren de la búsqueda de soluciones de una ecuación. Desde tiempos remotos se ha tratado de modelizar problemas presentes en la naturaleza con expresiones que, al fin y al cabo, permitan conocer a priori cómo se va a comportar un sistema. Entre las técnicas utilizadas para dicha búsqueda de soluciones encontramos los métodos iterativos. Iterar a partir de una serie de expresiones nos va a permitir conocer la solución de una función no lineal a partir de esquemas adecuados para ello. Además de los conocidos métodos de Newton y Steffensen, se van a implementar métodos con mayor orden de convergencia. Clasificar los métodos iterativos en función de sus características intrínsecas nos va a permitir valorar la bondad o la conveniencia del uso de un método iterativo u otro. Como en todos los problemas de ingeniería y matemáticas, tendremos que obtener una solución de compromiso. Otra de las caracterizaciones existentes, complementaria a la anterior, es el estudio de la dinámica compleja. El operador de punto fijo asociado a cada uno de los métodos iterativos cuando se aplica sobre una función no lineal va a permitir que caractericemos cada uno de los esquemas en el plano complejo. Buena parte del trabajo desarrollado se ha centrado en la representación gráfica de la dinámica de los métodos iterativos. El plano dinámico es una herramienta que nos permite visualizar la estabilidad de un método, el tamaño de sus cuencas de convergencia o la idoneidad de determinados puntos iniciales para comenzar a iterar. Asimismo, para familias de métodos uniparamétricas, el plano de parámetros va a colaborar en la elección del miembro de la familia más adecuado. Interpretando los planos dinámicos como una aproximación a los fractales, presentaremos la dimensión fractal como un factor de medida de lo intrincado que puede resultar el conjunto de Julia asociado a un método iterativo. Los fractales pertenecen a la frontera entre el determinismo y la teoría del caos, de forma que podremos transferir conceptos de ambas disciplinas sobre el estudio fractal. Mostraremos como aplicación de los métodos iterativos y la dinámica compleja la determinación de órbitas preliminares de satélites artificiales. A partir de la posición de un satélite en dos instantes diferentes, es posible determinar los parámetros de la elipse que describe. Para ello, utilizaremos un algoritmo en el que se incluye un método clásico de resolución para, a continuación, mejorar sus prestaciones con nuestras propuestas de métodos iterativos. Basándonos en la búsqueda de soluciones y en los métodos iterativos como técnica de obtención de soluciones, las aplicaciones abarcan campos más allá de la mecánica orbital. El diseño de filtros digitales, el procesado digital de imágenes o la caracterización de enlaces de radiofrecuencia son algunos de los ejemplos de aplicación. A partir de los conceptos anteriores, presentamos esta Tesis Doctoral para la obtención del título de Doctor en Matemáticas, contextualizando la temática en los primeros capítulos para, a continuación, presentar las publicaciones en revistas internacionales como fruto de la investigación.