Análisis de sentimiento en Instagrampolaridad y subjetividad de cuentas infantiles

  1. Vizcaino-Verdu, Arantxa 1
  2. Aguaded, Ignacio 1
  1. 1 Universidad de Huelva
    info

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

Revista:
Zer: Revista de estudios de comunicación = Komunikazio ikasketen aldizkaria

ISSN: 1137-1102

Año de publicación: 2020

Volumen: 25

Número: 48

Páginas: 213-229

Tipo: Artículo

DOI: 10.1387/ZER.21454 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Zer: Revista de estudios de comunicación = Komunikazio ikasketen aldizkaria

Objetivos de desarrollo sostenible

Resumen

Instagram haur eta gazteen eguneroko bizitzaren parte bihurtu da, eta nolabaiteko familia albuma sortzen dute. Testuinguru horretan, plataforman gurasoek kudeatutako haurren kontuetako 772 testu sarreraren polaritatea eta subjektibotasuna aztertu ditugu, hizkuntza naturalaren prozesamenduaren bitartez, machine learning delakoaren eta eduki analisiaren bitartez. Emaitzek erakutsi zuten positibotasun eta subjektibotasun nabaria zegoela gaztelaniazko lau kontutako eta ingelesezko lau kontutako lexikoaren eremuan, eta behin eta berriz erabiltzen zituztela hainbat adjektibo, hala nola: zoriontsu, berria, superra... Laburbilduz, haurren kontuek heziera bukoliko eta alaien joera adierazten dute.  

Referencias bibliográficas

  • American Psychological Association (2007). Task force on the sexualization of girls. Recuperado de https://bit.ly/2RFp5B6
  • American Psychological Association (2017). Ethical principles of psychologists and code of conduct. Recuperado de https://bit.ly/2iDuXKq
  • Ao, S. (2018). Sentiment analysis based on financial tweets and market information. En 2018 International Conference on Audio, Language and Image Processing (pp. 321-326). Shanghai: ICALIP. https://doi.org/10.1109/ICALIP.2018.8455771
  • Araque, O., Corcuera-Platas, I., Sánchez-Rada, F., y Iglesias, C.A. (2017). Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 77, 236-246. https://doi.org/10.1016/j.eswa.2017.02.002
  • Asch, S.E. (1946). Forming impressions of personality. The Journal of Abnormal and Social Psychology, 41(3), 258-290. https://doi.org/10.1037/h0055756
  • Ashok, M., Rajanna, S., y Joshi, P.V. (2016). A personalized recommender system using machine learning based sentiment analysis over social data. En 2016 IEEE Students' Conference on Electrical, Electronics and Computer Science (pp. 1-6). Bhopal, India: SCEECS. https://doi.org/10.1109/SCEECS.2016.7509354
  • Berezan, O., Krishen, A.S., Agarwal, S., y Kachroo, P. (2017). The pursuit of virtual happiness: Exploring the social media experience across generations. Journal of Business Research, 89, 455-461. https://doi.org/10.1016/j.jbusres.2017.11.038
  • Blum-Ross, A., y Livingstone, S. (2017). Sharenting, parent blogging, and the boundaries of the digital self. Popular Communication, 15(2), 110-125. https://doi.org/10.1080/15405702.2016.1223300
  • Bosangit, C., y Demangeot, C. (2016). Exploring reflective learning during the extended consumption of life experiences. Journal of Business Reserach, 69(1), 208-215. https://doi.org/10.1016/j.jbusres.2015.07.033
  • Bourdieu, P. (1990). Photography: A middlebrow art. Standford: Stanford University Press.
  • Buijzen, M., y Valkenburg, P.M. (2005). Parental mediation of undesired advertising effects. Journal of Broadcasting & Electronic Media, 49, 153-165. https://doi.org/10.1207/s15506878jobem4902_1
  • Buijzen, M., Schuurman, J., y Bomhof, E. (2008). Associations between children's television advertising exposure and their food consumption patterns: A household diary-survey study. Appetite, 50, 231-239. https://doi.org/10.1016/j.appet.2007.07.006
  • Calvo-González, S., y San-Fabián-Maroto, J.L. (2018). Selfies, jóvenes y sexualidad en Instagram: Representaciones del yo en formato imagen. Pixel-Bit, 52, 167-181. https://doi.org/10.12795/pixelbit.2018.i52.12
  • Casado-Riera, C., y Carbonell, X. (2018). La influencia de la personalidad en el uso de Instagram. Aloma, 36(2), 23-31. Recuperado de https://bit.ly/37dFP9b
  • Chacón-López, H., Romero-Barriga, J.F., Aragón-Carretero, Y., y Caurcel-Cara, M.J. (2016). Construcción y validación de la escala de conductas sobre sexting (ECS). Revista Española de Orientación y Psicopedagogía, 27(2), 99-115. https://doi.org/10.5944/reop.vol.27.num.2.2016.17116
  • Chae, J. (2018). Reexamining the relationship between social media and happiness: The effects of various social media platforms on reconceptualized happiness. Telematics and Informatics, 35(6), 1656-1664. https://doi.org/10.1016/j.tele.2018.04.011
  • Choi, G.Y., y Lewallen, J. (2017). Say Instagram, kids!: Examining sharenting and children's digital representations on Instagram. Howard Journal of Communication, 29(2), 144-164. https://doi.org/10.1080/10646175.2017.1327380
  • Dale, K.R., Raney, A.A., Ji, Q., Janicke-Bowles, S.H., Baldwin, J., Rowlett, J.T., … Oliver, M.B. (2019). Self-transcendent emotions and social media: Exploring the content and consumers of inspirational Facebook posts. New Media & Society, 1-21. https://doi.org/10.1177%2F1461444819865720
  • De-Casas-Moreno, P., Tejedor-Calvo, S., y Romero-Rodríguez, L.M. (2018). Micronarrativas en Instagram: Análisis del storytelling autobiográfico y de la proyección de identidades de los universitarios del ámbito de la comunicación. Prisma Social, 20, 41-57. Recuperado de https://bit.ly/30EDEsT
  • Díaz-Bustamante, M., y Llovet-Rodriguez, C. (2017). Empowerment or impoverishment of children from social networks? Perceptions of sexualized images of girls in Instagram. El Profesional de la Información, 26(1), 77-87. https://doi.org/10.3145/epi.2017.ene.08
  • Diener, E. (2009). Happiness. En M.R., Leary y R.H. Hoyle (Eds.), Handbook of individual differences in social behavior (pp. 147-160). New York: Guilford. Recuperado de https://bit.ly/2sK57gh
  • Diessner, R., Solom, R.C., Frost, N.K., Parsons, L., y Davidson, J. (2008). Engagement with beauty: Appreciating natural, artistic, and moral beauty. The Journal of Psychology, 142(3), 303-332. https://doi.org/10.3200/JRLP.142.3.303-332
  • Diyana-Abdullah, N.S., y Asnira-Zolkepli, I. (2017). Sentiment analysis of online crowd input towards brand provocation in Facebook, Twitter, and Instagram. En Proceedings of the International Conference on Big Data and Internet of Thing (pp. 67-74). New York: BDIOT. https://doi.org/10.1145/3175684.3175689
  • Domingo, M., Jewitt, C., y Kress, G. (2015). Multimodal social semiotics: Writing in online contexts. En J. Rowsell & K. Pahl (Eds.), The Routledge Handbook of Literacy Studies (pp. 251-266). London: Routledge. Recuperado de https://bit.ly/2sMlbOE
  • Dresner, E., y Herring, S.C. (2010). Functions of the nonverbal in CMC: Emoticons and 833 illocutionary force. Communication Theory, 20(3), 249-268. https://doi.org/10.1111/j.1468-2885.2010.01362.x
  • Freitas, D. (2017). The happiness effect: How social media is driving a generation to appear perfect at any cost. Oxford: Oxford University Press.
  • Gómez-Espino, J.M., y Blanco-López, J. (2005). Los niños en la publicidad. Una propuesta de categorización de las representaciones sociales sobre la infancia en los anuncios televisivos. ZER Revista de Estudios de Comunicación, 10(19), 53-79. Recuperado de https://bit.ly/36iU2jM
  • Gorton, K., y Garde-Hansen, J. (2013). Social media, happiness, and virtual communities. En Emotion online (pp. 103-125). London: Palgrave Macmillan. https://doi.org/10.1057/9781137312877_5
  • Hadjipanayis, A., Efstathiou, E., Altorjai, P., Stiris, T., Valiulis, A., Koletzko, B., y Fonseca, H. (2019). Social media and children: What is the paediatrician's role? European Journal of Pediatrics, 178(10), 1605-1612. https://doi.org/10.1007/s00431-019-03458-w
  • Hasan, A., Moin, S., Karim, A., y Shamshirband, S. (2018). Machine learning-based sentiment analysis for Twitter accounts. Mathematical and Computational Applications, 23(11), 1-15. https://doi.org/10.3390/mca23010011
  • Ho, H., Shin, W., y Lwin, M.O. (2017). Social networking site use and materialistic values among youth: The safeguarding role of the parent-child relationship and self-regulation. Communication Research, 46(8), 1119-1144. https://doi.org/10.1177/0093650216683775
  • Huffaker, D. (2010). Dimensions of leadership and social influence in online 853 communities. Human Communication Research, 36(4), 593-617. https://doi.org/10.1111/j.1468-2958.2010.01390.x
  • Hummel-O'Donnell, N. (2018). Storied lives on Instagram: Factors associated with the need for personal-visual identity. Visual Communication Quarterly, 25(3), 131-142. https://doi.org/10.1080/15551393.2018.1490186
  • Instagram (2020). About us. Recuperado de https://bit.ly/38n6mBa
  • Izquierdo-Iranzo, P., y Gallardo-Echenique, E. (2020). Estudigramers: Influencers del aprendizaje. [Studygrammers: Learning influencers]. Comunicar, 62, 115-125. https://doi.org/10.3916/C62-2020-10
  • Kim, Y., y Kim, J.H. (2018). Using computer vision techniques on Instagram to link users' personalities and genders to the features of their photos: An exploratory study. Information Processing and Management, 54, 1101-1114. https://doi.org/10.1016/j.ipm.2018.07.005
  • Krippendorff, K. (1980). Metodología de análisis de contenido. Teoría y práctica. Barcelona: Paidós.
  • Larrañaga, E., Navarro, R., y Yubero, S. (2018). Socio-cognitive and emotional factors on perpetration of cyberbullying. [Factores socio-cognitivos y emocionales en la agresión del ciberacoso]. Comunicar, 56, 19-28. https://doi.org/10.3916/C56-2018-02
  • Lee, E., Lee, J.A., Moon, J.H., y Sung, Y. (2015). Pictures speak louder than words: Motivations for using Instagram. Cyberpsychology, Behavior and Social Networking, 18(9), 552-556. https://doi.org/10.1089/cyber.2015.015
  • Le-Moignan, E., Lawson, S., Rowland, D.A., Mahoney, J., y Briggs, P. (2017). Has Instagram fundamentally altered the 'family snapshot'? Technology in Households, 6(11), 4935-4947. https://doi.org/10.1145/3025453.3025928
  • Liu, B. (2015). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge: Cambridge University Press.
  • Livingstone, S., Mascheroni, G., Ólafsson, K., y Haddon, L. (2014). Children's online risks and opportunities: Comparative findings from EU Kids online and Net Children Go Mobile. London: EU Kids Online. Recuperado de https://bit.ly/37fJDXo
  • Lup, K., Trub, L., y Rosenthal, L. (2015). Instagram #instasad?: Exploring associations among Instagram use, depressive symptoms, negative social comparison, and strangers followed. Cyberpsychology, Behavior and Social Networking, 18(5), 247-252. https://doi.org/10.1089/cyber.2014.0560
  • Marinas, L. (2019). Instagram: Donde Millenialls, Generación Z, McLuhan y Bolter se cruzan. Cuadernos de Información y Comunicación, 24, 187-201. https://doi.org/10.5209/ciyc.64641
  • Micu, A., Micu, A.E., Geru, M., y Lixandroiu, R.C. (2017). Analyzing user sentiment in social media: Implications for online marketing strategy. Psychology & Marketing, 34(12), 1094-1100. https://doi.org/10.1002/mar.21049
  • Nathanson, A.I. (2004). Factual and evaluative approaches to modifying children's responses to violent television. Journal of Communication, 54, 321-336. https://doi.org/10.1111/j.1460-2466.2004.tb02631.x
  • Pang, B., Lee, L., y Viathyanathan, S. (2002). Thumbs up?: Sentiment classification using machine learning techniques. En Proceedings of the ACL-02 conference on empirical methods in natural language processing (pp. 79-86). Stroudsburg: Association for Computational Linguistics.
  • Peña-Cárdenas, F., Rojas-Solís, J.L., y García-Sánchez, P.V. (2018). Uso problemático de Internet, cyberbullying y ciber-violencia de pareja en jóvenes universitarios. Diversitas: Perspectivas en Psicología, 14(2), 205-219. https://doi.org/10.15332/s1794-9998
  • Pérez-Sinusía, M., y Cassany, D. (2018). Escribir y compartir: Prácticas escritas e identidad de los adolescentes en Instagram. Aula de Encuentro, 20(2), 75-94. https://doi.org/10.17561/ae.v20i2.5
  • Reinecke, L., y Trepte, S. (2014). Authenticity and well-being on social network sites: A two wave longitudinal study on the effects of online authenticity and the positivity bias in SNS communication. Computers in Human Behavior, 30(1), 95-102. https://doi.org/10.1016/j.chb.2013.07.030
  • Rose, G. (2010). Doing family photography: The domestic, the public and the politics of sentiment. Surrey: Ashgate Publishing. https://doi.org/10.4324/9781315577890
  • Scheinbaum, A. (2017). The dark side of social media: A consumer psychology perspective. New York: Routledge. https://doi.org/10.4324/9781315167718
  • Thurlow, C., Lengel, L., y Tomic, A. (2004). Computer mediated communication: Social interaction and the Internet. London: Sage. https://doi.org/10.5860/choice.42-0992
  • Veenhoven, R. (1991). Is happiness relative? Social Indicators Research, 24(1), 1-34. https://doi.org/10.1007/BF00292648
  • Vizcaíno-Verdú, A., Contreras-Pulido, P., y Guzmán-Franco, M.D. (2019). Lectura y aprendizaje informal en YouTube: El booktuber. [Reading and informal learning trends on YouTube: The booktuber]. Comunicar, 59, 95-104. https://doi.org/10.3916/C59-2019-09
  • Waterloo, S.F., Baumgartner, S.E., Peter, J., y Valkenburg, P.M. (2018). Norms of online expressions of emtoion: Comparing Facebook, Twitter, Instagram, and Whatsapp. New Media & Society, 20(5), 1813-1831. https://doi.org/10.1177%2F1461444817707349
  • Wernholm, M., y Reneland-Forsman, L. (2019). Children's representation of self in social media communities. Learning, Culture and Social Interaction, 23, 1-15. https://doi.org/10.1016/j.lcsi.2019.100346
  • Willoughby, M. (2018). A review of the risks associated with children and young people's social media use and the implications for social work practice. Journal of Social Work Practice, 33(2), 127-140. https://doi.org/10.1080/02650533.2018.1460587
  • Zhan, M., Tu, R., y Yu, Q. (2018). Understanding readers: Conducting sentiment analysis of Instagram captions. En Proceedings Of 2018 The 2nd International Conference on Computer Science and Artificial Intelligence (pp. 33-40). Shenzhen, China: Association for Computing Machinery. https://doi.org/10.1145/3297156.3297270