Extension of the IMS Learnin Design specification based on adaptation and integration of units of learning
- Ángel García Crespo Zuzendaria
- Belén Ruiz Mezcua Zuzendaria
Defentsa unibertsitatea: Universidad Carlos III de Madrid
Fecha de defensa: 2008(e)ko apirila-(a)k 25
- Antonio de Amescua Seco Presidentea
- Paloma Martínez Fernández Idazkaria
- Jesús González Boticario Kidea
- Daniel Olmedilla de la Calle Kidea
- Carlos Delgado Kloos Kidea
Mota: Tesia
Laburpena
IMS Learning Design (IMS-LD) is a current asset in eLearning and blended learning, due to several reasons: a) It is a specification that points to standardization and modeling of learning processes, and not just content; at the same time, it is focused on the re-use of the information packages in several contexts; b) It shows a deeper pedagogical expressiveness than other specifications, already delivered or in due process c) It is integrated at different levels into well-known Learning Management Systems (LMSs) d) There are a huge amount of European research projects and groups working with it, which aims at sustainability (in academia, at least) Nevertheless, IMS-LD is roughly an initial outcome (be aware that we are still working with the same release, dated on 2003). Therefore, it can and must be improved in several aspects, i.e., pedagogical expressiveness and interoperability. In this thesis, we concentrate on Adaptive Learning (or Personalised Learning) and on the Integration of Units of Learning (UoLs). They both are core aspects which the specification is built upon. They also can improve it significantly. Adaptation makes personalised learning itineraries, adapted to every role, to every user involved in the process, and focus on several aspects, i.e., flow, content and interface. Integration fosters the re-use of IMS-LD information packages in different contexts and connects both-ways UoLs with other specifications, models and LMSs. In order to achive these goals we carry out a threephase analysis. First, analysis of IMS-LD in several steps: foundations, information model, construction of UoLs. From Level A to Level C, we analyse and review the specification structure. We lean on a theoretical frameword, along with a practical approach, coming from the actual modeling of real UoLs which give an important report back. Out of this analysis we get a report on the general structure of IMS-LD. Second, analysis and review of the integration of UoLs with several LMSs, models and specifications: we analyse three different types of integration: a) minimal integration, with a simple link between parts; b) embedded integration, with a marriage of both parts in a single information package; and d) full integration, sharing variables and states between parts. In this step, we also show different case studies and report our partial conclusions. And third, analysis and review of how IMS-LD models adaptive learning: we define, classify and explain several types of adaptation and we approach them with the specificacion. A key part of this step is the actual modeling of UoLs showing adaptive learning processes. We highlight pros and cons and stress drawbacks and weak points that could be improved in IMS-LD to support adaptation, but also general learning processes Out of this three-step analysis carried out so far (namely general, integration, adaptation) we focus our review of the IMS-LD structure and information model on two blocks: Modeling and Architecture. Modeling is focused on process, components and programming resources of IMS-LD. Architecture is focused on the communication that IMS-LD establishes outside, both ways, and it deals with upper layers of the specification, beyong modeling issues. Modeling and Architecture issues need to be addressed in order to improve the pedagogical expressiveness and the integration of IMS-LD. Furthermore, we provide an orchestrated solution which meets these goals. We develop a structured and organized group of modifications and extensions of IMS-LD, which match the different reported problems issues. We suggest modifications, extensions and addition of different elements, aiming at the strength of the specification on adaptation and integration, along with general interest issues. The main conclusion out of this research is that IMS-LD needs a re-structure and a modification of some elements. It also needs to incorporate new ones. Both actions (modification and extension) are the key to improve the pedagogical expressiveness and the integration with other specifications and eLearning systems. Both actions aim at two clear objectives in the definition of IMS-LD: the personalisation of learning processes, and a real interoperability. It is fair to highlight the welcome help of high-level visual authoring tools. They can support a smoother modeling process that could focus on pedagogical issues and not on technical ones, so that a broad target group made of teachers, learning designers, content creators and pedagogues could make use of the specification in a simpler way. However, this criticism is outside the specification, so outside the core of this thesis too. This three-year research (2004-2007) has been carried out along with colleagues from The Open University of The Netherlands, The University of Bolton, Universitat Pompeu Fabra and from the Department of Research & Innovation of ATOS Origin. In addition, a few European projects, like UNFOLD, EU4ALL and ProLearn, have partially supported it.