MetaTutorrevisión sistemática de una herramienta para la evaluación e intervención en autorregulación del aprendizaje
- María Esteban-García 1
- Rebeca Cerezo-Menéndez 1
- Antonio Cervero-Fernández 1
- Ellían Tuero-Herrero 1
- Ana Bernardo-Gutiérrez 1
-
1
Universidad de Oviedo
info
ISSN: 1699-9517
Year of publication: 2020
Volume: 15
Issue: 2
Pages: 121-138
Type: Article
More publications in: Revista de Psicología y Educación
Abstract
The so-called Advanced Learning Technologies have brougth a great advance in the research field of self-regulated learning; these technologies make possible to register self-regulatory behaviors while intervening on them. There are many computer-mediated learning environments developed with this objective, however, MetaTutor is one of the most important ones because of the quantity and diversity of evaluation and intervention instruments that it integrates. The purpose of this paper is to systematically review the main publications about this intelligent tutoring system. Thus, a search of papers under the descriptor “metatutor” has been carried out in the Web of Science, PsicInfo and PubMed databases, limiting the search to the writings published between 2010 and 2020. The search emerged in 50 results that, after the application of the exclusion criteria, were reduced to 25. The results of the analysis highlight the influence of a considerable number of variables in the self-regulatory process and in its learning outcomes; personal factors, previous knowledge, goal orientation, navigation patterns, emotions, learning strategies, interaction with pedagogical agents, etc. Thus, it is possible to conclude that MetaTutor is an effective tool for the evaluation and intervention in self-regulated learning processes.
Bibliographic References
- *Publicaciones que forman parte de la revisión sistemática.
- Azevedo, R. (2005). Computers as metacognitive tools for enhancing learning. Educational Psychologist, 40(4), 193-197. doi:10.1207/ s15326985ep4004_1
- Azevedo, R., Behnagh, R., Duffy, M., Harley, J., y Trevors, G. (2012). Metacognition and self-regulated learning in studentcentered leaning environments. En D. Jonassen, y S. Land (Eds.) Theoretical foundations of student-centered learning environments (pp. 171-197). Florence, USA: Routledge, Taylor & Francis Group.
- Azevedo, R., y Chauncey, A. (2011). Integrating cognitive, metacognitive, and affective regulatory processes with MetaTutor. En R.A. Calvo y S.K. D´Mello (Eds.) New perspectives on affect and learning technologies (pp. 141-154). New York, USA: Springer. doi:10.1007/978- 1-4419-9625-1
- Azevedo, R., Harley, J., Trevors, G., Duffy, M., Feyzi-Behnagh, R., Bouchet, F., y Landis, R. (2013). Using trace data to examine the complex roles of cognitive, metacognitive, and emotional selfregulatory processes during learning with multi-agent systems. En R. Azevedo y V. Aleven (Eds.), International handbook of metacognition and learning technologies (pp. 427-449). New York, USA: Springer.
- *Azevedo, R., Johnson, A., Chauncey, A., y Burkett, C. (2010A). Self-regulated learning with MetaTutor: Advancing the science of learning with MetaCognitive tools. En M. S. Khine e I. M. Saleh (Eds.), New science of learning (pp. 225-247). New York: Springer. doi:10.1007/978- 1-4419-5716-0
- *Azevedo, R., Martin, S. A., Taub, M., Mudrick, N. V., Millar, G. C., y Grafsgaard, J. F. (2016). Are pedagogical agents’ external regulation effective in fostering learning with intelligent tutoring systems? En A. Micarelli, J. Stamper y K. Panourgia (Eds.) International Conference on Intelligent Tutoring Systems (pp. 197- 207). Zagreb, Croacia: Springer, Cham. doi:10.1007/978-3-319-39583-8_19
- Azevedo, R., Moos, D. C., Johnson, A. M., y Chauncey, A. D. (2010B). Measuring cognitive and metacognitive regulatory processes during hypermedia learning: Issues and challenges. Educational psychologist, 45(4), 210-223.
- Azevedo, R., y Strain, A. C. (2011). Integrating cognitive, metacognitive, and affective regulatory processes with
- MetaTutor. En R.A. Calvo y S.K. D´Mello (Eds.) New perspectives on affect and learning technologies (pp. 141-154). New York, USA: Springer.
- Azevedo, R., Witherspoon, A. M., Chauncey, A., Burkett, C., y Fike, A. (2009). MetaTutor: A MetaCognitive Tool for Enhancing Self-Regulated Learning. En R. Pirrone, R. Azevedo y G. Biswas (Eds.) AAAI Fall Symposium: Cognitive and Metacognitive Educational Systems. Recuperado de www.aaai. org/ocs/index.php/FSS/FSS09/paper/ viewFile/995/1253
- Azevedo, R., Witherspoon, A. M., Graesser, A. C., McNamara, D. S., Chauncey, A., Siler, E., Cai, Z.Q., Rus, V., y Lintean, M. C. (2009). MetaTutor: Analyzing Self-Regulated Learning in a Tutoring System for Biology. En D. Dicheva y D. Dochey (Eds.), Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 635- 637). Brighton, UK: Sirma Group Corp. doi:10.3233/978-1-60750-028-5-635
- Beheshitha, S. S., GaÅ¡eviÄ, D., y Hatala, M. (2015). A process mining approach to linking the study of aptitude and event facets of self-regulated learning. En J. Baron, G. Lynch y O. Maziarz (Eds.), Proceedings of the fifth international conference on learning analytics and knowledge (pp. 265-269). New York, USA: Association for Computing Machinery.
- Bogarin, A., Cerezo, R., y Romero, C. (2018). Discovering learning processes using inductive miner: a case study with Learning Management Systems (LMSs). Psicothema, 30(3), 322-329. doi:10.7334/psicothema2018.116
- *Bouchet, F., Harley, J. M., y Azevedo, R. (2016). Can Adaptive Pedagogical Agents’ Prompting Strategies Improve Students’ Learning and Self-Regulation? En A. Micarelli, J. Stamper y K. Panourgia (Eds.). 13th International Conference on Intelligent Tutoring Systems (pp. 368- 374). Zagreb, Croacia: Springer, Cham. doi:10.1007/978-3-319-39583-8_43
- Bulu, S. T., y Pedersen, S. (2012). Supporting problem-solving performance in a hypermedia learning environment: The role of students’ prior knowledge and metacognitive skills. Computers in Human Behavior, 28(4), 1162-1169. doi:10.1016/j.chb.2012.01.026
- Cerezo, R., Esteban, M., Rodríguez, L., Bernardo, A., Sánchez, M., Amiero, N., y Pereles, A (2017a). Learning Difficulties in Computer-Based Learning Environments. En J. A. González-Pienda, A. Bernardo, J. C. Núñez, y C. Rodríguez (Eds.), Factors Affecting academic performance (pp. 157-171). New York, USA: Nova Science.
- Cerezo, R., Esteban, M., Sánchez-Santillán, M., y Núñez, J. C. (2017b). Procrastinating behavior in computer-based learning environments to predict performance: A case study in Moodle. Frontiers in psychology, 8, 1403. doi:10.3389/ fpsyg.2017.01403
- *Cloude, E. B., Taub, M., y Azevedo, R. (2018). Investigating the Role of Goal Orientation: Metacognitive and Cognitive Strategy Use and Learning with Intelligent Tutoring Systems. En R. Nkambou, R. Azevedo, y J. Vassileva (Eds.) International Conference on Intelligent Tutoring Systems (pp. 44-53). Nueva York, USA: Springer, Cham. doi:10.1007/978-3- 319-91464-0_5
- Dahlstrom, E., Brooks, D. C., y Bichsel, J. (2014). The current ecosystem of learning management systems in higher education: Student, faculty, and IT perspectives (Research report). Recuperado de www.digitallernen.ch/ wp-content/uploads/2016/02/ers1414. pdf
- Dinsmore, D. L., Alexander, P. A., y Loughlin, S. M. (2008). Focusing the conceptual lens on metacognition, self-regulation, and self-regulated learning. Educational Psychology Review, 20(4), 391-409. doi:10.1007/s10648-008-9083-6
- Dodge, A. M. (2013). From Research to Practice: Understanding Self-Regulation. Newsletter Talk to Teachers. Education Matters, 1(1), 4-6. Recuperado de
- www.punyamishra.com/wp-content/ uploads/2014/02/Dodge-selfregulation.pdf
- *Duffy, M. C., y Azevedo, R. (2015). Motivation matters: Interactions between achievement goals and agent scaffolding for self-regulated learning within an intelligent tutoring system. Computers in Human Behavior, 52, 338-348. doi:10.1016/j.chb.2015.05.041
- Elliot, A. J., y McGregor, H. A. (2001). A 2x2 achievement goal framework. Journal of Personality and Social Psychology, 80, 501-519. doi:10.1037/0022- 3514.80.3.501
- *Graesser, A., y McNamara, D. (2010). Self-regulated learning in learning environments with pedagogical agents that interact in natural language. Educational Psychologist, 45(4), 234- 244. doi:10.1080/00461520.2010.51 5933
- Gross, J. J., y John, O. P. (2003). Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348. doi:10.1037/0022- 3514.85.2.348
- *Harley, J. M., Bouchet, F., Hussain, M. S., Azevedo, R., y Calvo, R. (2015a). A multicomponential analysis of emotions during complex learning with an intelligent multi-agent system. Computers in Human Behavior, 48, 615-625. doi:10.1016/j. chb.2015.02.013
- *Harley, J. M., Carter, C. C., Papaionnou, N., Bouchet, F., Landis, R. S., Azevedo, R., y Karabachian, L. (2015b). Examining the predictive relationship between personality and emotion traits and learners’ agent-direct emotions. En C. Conati, N. Heffernan, A. Mitrovic y M. F. Verdejo (Eds.) International Conference on Artificial Intelligence in Education (pp. 145-154). Nueva York, USA: Springer, Cham. doi:10.1007/978-3-319-19773- 9_15
- *Harley, J. M., Carter, C. K., Papaionnou, N., Bouchet, F., Landis, R. S., Azevedo,
- R., y Karabachian, L. (2016). Examining the predictive relationship between personality and emotion traits and students’ agent-directed emotions: towards emotionally-adaptive agentbased learning environments. User Modeling and User-Adapted Interaction, 26(2-3), 177-219. doi:10.1007/ s11257-016-9169-7
- *Harley, J. M., Taub, M., Azevedo, R., y Bouchet, F. (2017). “Let's Set Up Some Subgoals”: Understanding HumanPedagogical Agent Collaborations and Their Implications for Learning and Prompt and Feedback Compliance. IEEE Transactions on Learning Technologies, 11(1), 54-66. doi:10.1109/ TLT.2017.2756629
- *Jaques, N., Conati, C., Harley, J. M., y Azevedo, R. (2014). Predicting affect from gaze data during interaction with an intelligent tutoring system. En S. Trausan-Matu, K. E. Boyer, M. Crosby y K. Panourgia (Eds.), International Conference on Intelligent Tutoring Systems (pp. 29-38). Nueva York, USA: Springer, Cham. doi:10.1007/978-3- 319-07221-0_4
- Järvelä, S., y Hadwin, A. F. (2013). New frontiers: Regulating learning in CSCL. Educational Psychologist, 48(1), 25-39. doi:10.1080/00461520.2012.748006
- Lajoie, S. P. (2008). Metacognition, selfregulation, and self-regulated learning: A rose by any other name? Educational Psychology Review, 20(4), 469-475. doi:10.1007/s10648-008-9088-1
- *Lallé, S., Conati, C., y Azevedo, R. (2018). Prediction of student achievement goals and emotion valence during interaction with pedagogical agents. En E. Andre y S. Koenig (Eds.), Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (pp. 1222-1231). International Foundation for Autonomous Agents and Multiagent Systems.
- *Lallé, S., Mudrick, N. V., Taub, M., Grafsgaard, J. F., Conati, C., y Azevedo, R. (2016). The impact of individual
- differences on affective reactions to pedagogical agents scaffolding. En J. Kolkmeier, J. Vroon y D. Heylen (Eds.), International Conference on Intelligent Virtual Agents (pp. 269-282). Verlag: Springer International Publishing. doi:10.1007/978-3-319-47665-0_24
- *Lallé S., Taub, M., Mudrick, N. V., Conati, C., y Azevedo, R. (2017). The Impact of Student Individual Differences and Visual Attention to Pedagogical Agents During Learning with MetaTutor. En E. André, R. Baker, X. Hu, M. Rodrigo y B. Du Boulay (Eds.), Artificial Intelligence in Education. Lecture Notes in Computer Science (pp 149-161). Nueva York, USA: Springer, Cham. doi:10.1007/978-3-319-61425- 0_13
- Link, T. M., y Marz, R. (2006). Computer literacy and attitudes towards e-learning among first year medical students. BMC Medical Education, 6(1), 34. doi:10.1186/1472-6920-6-34
- *Lintean, M., Rus, V., y Azevedo, R. (2012). Automatic detection of student mental models based on natural language student input during metacognitive skill training. International Journal of Artificial Intelligence in Education, 21(3), 169- 190. doi:10.3233/JAI-2012-022
- Martín-Albo, J., Núñez, J. L., Navarro, J. G., y Grijalvo, F. (2007). The Rosenberg SelfEsteem Scale: translation and validation in university students. The Spanish Journal of Psychology, 10(2), 458-467.
- *Martin, S. A., Azevedo, R., Taub, M., Mudrick, N. V., Millar, G. C., y Grafsgaard, J. F. (2016). Are There Benefits of Using Multiple Pedagogical Agents to Support and Foster Self-Regulated Learning in an Intelligent Tutoring System? En A. Micarelli, J. Stamper y K. Panourgia (Eds.), International Conference on Intelligent Tutoring Systems (pp. 273- 279). Nueva York, USA: Springer, Cham. doi:10.1007/978-3-319-39583-8_29
- Panadero, E., Klug, J., y Järvelä, S. (2016). Third wave of measurement in the self-regulated learning field: when measurement and intervention come
- hand in hand. Scandinavian Journal of Educational Research, 60(6), 723-735. doi:10.1080/00313831.2015.106643 6
- Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., y Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36-48. doi:10.1016/j.cedpsych.2010.10.002
- *Price, M. J., Mudrick, N. V., Taub, M., y Azevedo, R. (2018). The Role of Negative Emotions and Emotion Regulation on Self-Regulated Learning with MetaTutor. En R. Nkambou, R. Azevedo, y J. Vassileva (Eds.), International Conference on Intelligent Tutoring Systems (pp. 170- 179). Springer, Cham.
- Rosenberg, M. (1979). Conceiving the Self. New York, USA: Basic Books. doi:10.1007/978-3-319-91464-0_17
- Rosenberg, M. (1979). Conceiving the self. New York: Basic Books.
- *Sinclair, J., Jang, E. E., Azevedo, R., Lau, C., Taub, M., y Mudrick, N. V. (2018). Changes in Emotion and Their Relationship with Learning Gains in the Context of MetaTutor. En R. Nkambou, R. Azevedo, y J. Vassileva (Eds.), International Conference on Intelligent Tutoring Systems (pp. 202-211). Springer, Cham. doi:10.1007/978-3-319-91464-0_20
- Stahl, E., y Bromme, R. (2007). The CAEB: An instrument for measuring connotative aspects of epistemological beliefs. Learning and Instruction, 17(6), 773-785. doi:10.1016/j. learninstruc.2007.09.016
- *Taub, M., y Azevedo, R. (2016). Using eyetracking to determine the impact of prior knowledge on self-regulated learning with an adaptive hypermedia-learning environment. En A. Micarelli, J. Stamper y K. Panourgia (Eds.), 13th International Conference on Intelligent Tutoring Systems (pp. 37-47). Zagreb, Croacia: Springer, Cham. doi:10.1007/978-3- 319-39583-8_4
- *Taub, M., y Azevedo, R. (2019). How
- Does Prior Knowledge Influence Eye Fixations and Sequences of Cognitive and Metacognitive SRL Processes during Learning with an Intelligent Tutoring System? International Journal of Artificial Intelligence in Education, 29(1), 1-28. doi:10.1007/s40593-018-0165-4
- *Taub, M., Azevedo, R., Bouchet, F., y Khosravifar, B. (2014). Can the use of cognitive and metacognitive selfregulated learning strategies be predicted by learners’ levels of prior knowledge in hypermedia-learning environments? Computers in Human Behavior, 39, 356- 367. doi:10.1016/j.chb.2014.07.018
- *Taub, M., Mudrick, N. V., Rajendran, R., Dong, Y., Biswas, G., y Azevedo, R. (2018). How Are Students’ Emotions Associated with the Accuracy of Their Note Taking and Summarizing During Learning with ITSs? En R. Nkambou, R. Azevedo, y J. Vassileva (Eds.), International Conference on Intelligent Tutoring Systems (pp. 233-242). Springer, Cham. doi:10.1007/978-3-319-91464-0_23
- *Trevors, G., Duffy, M., y Azevedo, R. (2014). Note-taking within MetaTutor: interactions between an intelligent tutoring system and prior knowledge on note-taking and learning. Educational Technology Research and Development, 62(5), 507-528. doi:10.1007/s11423- 014-9343-8
- Trevors, G., Feyzi-Behnagh, R., Azevedo, R., y Bouchet, F. (2016). Selfregulated learning processes vary as a function of epistemic beliefs and contexts: Mixed method evidence from eye tracking and concurrent and retrospective reports. Learning and Instruction, 42, 31-46. doi:10.1016/j. learninstruc.2015.11.003
- Winne, P. H. (2017). Cognition and metacognition within self-regulated learning. En D.H. Schunk y J.A. Green (Eds.) Handbook of self-regulation of learning and performance (pp. 52-64). Routledge.
- Winne, P. H., y Hadwin, A. F. (2013). nStudy: Tracing and supporting self-regulated
- learning in the internet. En R. Azevedo y V. Aleven (Eds.), International Handbook of Metacognition and Learning Technologies (pp. 293-307). Nueva York: Springuer. doi:10.1007/978-1-4419-5546-3_20
- Witherspoon, A., Azevedo, R., y Cai, Z. (2009). Learners' exploratory behavior within MetaTutor. En V. Dimitrova, R. Mizoguchi, B. du Boulay y A. Graesser (Eds.) Proceedings of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling (pp. 644-646). Amsterdam, Holanda: IOS Press. doi:10.3233/978- 1-60750-028-5-644
- Witherspoon, A. M., Azevedo, R., y D’Mello, S. (2008). The dynamics of self-regulatory processes within self-and externally regulated learning episodes during complex science learning with hypermedia. En B. P. Woolf, E. Aïmeur, R. Nkambou y S. Lajoie (Eds.), 9th International Conference on Intelligent Tutoring Systems (pp. 260-269). Berlin, Alemania: Springer. doi:10.1007/978- 3-540-69132-7_30
- *Wortha, F., Azevedo, R., Taub, M., y Narciss, S. (2019). Multiple negative emotions during learning with digital learning environments–Evidence on their detrimental effect on learning from two methodological approaches. Frontiers in Psychology, 10, 2678. doi:10.3389/ fpsyg.2019.02678
- Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American educational research journal, 45(1), 166-183. doi:10.3102/0002831207312909