Emerging technologies. Analysis and current perspectives

  1. Agreda Montoro, Miriam 1
  2. Ortiz Colón, Ana Mª 1
  3. Rodríguez Moreno, Javier 1
  4. Steffens, Karl 2
  1. 1 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

  2. 2 University of Köln
Revista:
Digital Education Review

ISSN: 2013-9144

Año de publicación: 2019

Título del ejemplar: Technology to Improve the Assessment of Learning

Número: 35

Páginas: 186-201

Tipo: Artículo

DOI: 10.1344/DER.2019.35.186-201 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Digital Education Review

Objetivos de desarrollo sostenible

Resumen

The convergence in the use of technology in classrooms and the development of new methodologies have involved a redefinition of the different educational agents’ performance, for the upcoming Horizon reports to generate a radiography of the emerging technological trends that will have an impact in the upcoming years. As a consequence, we will focus on adaptative learning technologies based on the perspectives of profound learning, where the achievement of objectives will be reflected through generated learning analytics, whose association may produce consistent verifiable blockchains. For that matter, this work proposes a meta-analysis of 62 research studies indexed in the WOS and Scopus databases during 2013 and 2018, in the area of Social Sciences, taking as descriptors the technologies mentioned in those reports. A search strategy based on four different criteria has been used: public (target), topic, methodological design and main conclusions.

Referencias bibliográficas

  • Adams Becker, S., Cummins, M., Freeman, A., Giesenger Hall, C., & Yuhnke, B. (2016). NMC Horizon Report: 2016 K-12 Edition. (pp. 1-49). Austin, Texas: The New Media Consortium. Recuperado de http://cdn.nmc.org/media/2016-nmc-cosn-horizon-report-k12-EN.pdf
  • Adams Becker, S., Cummins, M., Freeman, A., Giesinger Hall, C., & Ananthanarayanan, V. (2017). NMC Horizon Report: Higher Education Edition (pp. 1-56). Austin, Texas: The New Media Consortium. Recuperado de http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf
  • Adner, R., & Levinthal, D. A. (2002). The emergence of emerging technologies. California Management Review, 45(1), 50–66. https://journals.sagepub.com/doi/pdf/10.2307/41166153?casa_token=QhkZSixBAjkAAAAA%3A_IE5RZWxuI7hGbzBa3o7m5TO-t2DwhUNobkRgoIrTudYtCICL_6zgp16XWidPoOo3qB_Egu4Y3XAkg
  • Aguaded, I., Vázquez-Cano, E. & López-Meneses, E. (2016). El impacto bibliométrico del movimiento MOOC en la Comunidad Científica Española. Educación XX1, 19(2), 77-104, doi: 10.5944/educXX1. 13217
  • Akhtar, S., Warburton, S., & Xu, W. (2017). The use of an online learning and teaching system for monitoring computer aided design student participation and predicting student success. International Journal of Technology and Design Education, 27(2), 251-270. https://doi.org/10.1007/s10798-015-9346-8
  • Avila-Robinson, A., & Miyazaki, K. (2011). Conceptualization and operationalization of emerging technologies: A complementing approach. En 2011 Proceedings of PICMET ’11: Technology Management in the Energy Smart World (PICMET) (pp. 1-12).
  • Baker, R. S., & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. En J. A. Larusson & B. White (Eds.), Learning Analytics: From Research to Practice (pp. 61-75). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3305-7_4
  • Baytiyeh, H., & Naja, M. K. (2017). Students’ perceptions of the flipped classroom model in an engineering course: a case study. European Journal of Engineering Education, 42(6), 1048-1061. https://doi.org/10.1080/03043797.2016.1252905
  • Berners‐Lee, T., Cailliau, R., Pollermann, B., & Groff, J. (1992). World‐Wide Web: The Information Universe. Internet Research, 2(1), 52-58. https://doi.org/10.1108/eb047254
  • Bettencourt, L., Kaiser, D., Kaur, J., Castillo-Chávez, C., & Wojick, D. (2008). Population modeling of the emergence and development of scientific fields. Scientometrics, 75(3), 495-518. https://doi.org/10.1007/s11192-007-1888-4
  • Biggs, J., & Tang, C. (2007). Setting the stage for effective teaching. Teaching for quality learning at university, 31–59.
  • Boyack, K. W., Small, H., & Klavans, R. (2013). Improving the accuracy of co-citation clustering using full text. Journal of the American Society for Information Science and Technology, 64(9), 1759-1767. https://doi.org/10.1002/asi.22896
  • Brooks, C., Greer, J., & Gutwin, C. (2014). The Data-Assisted Approach to Building Intelligent Technology-Enhanced Learning Environments. En J. A. Larusson & B. White (Eds.), Learning Analytics: From Research to Practice (pp. 123-156). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3305-7_7
  • Castellon-Fuentes, J. D., Morente-Molinera, J. A., Herrera-Viedma, E., & Lopez-Herrera, A. G. (2013). A New Moodle Module for Interactive Video-Lessons: An Adaptative Way to Follow a Course. En L. G. Chova, A. L. Martinez, & I. C. Torres (Eds.), 7th International Technology, Education and Development Conference (inted2013). Valenica: Iated-Int Assoc Technology Education a& Development.
  • Choi, G. W., Land, S. M., & Zimmerman, H. T. (2018). Investigating children’s deep learning of the tree life cycle using mobile technologies. Computers in Human Behavior, 87, 470-479. https://doi.org/10.1016/j.chb.2018.04.020
  • Clarivate Analytics. (2018). WOS-basic search. Recuperado 26 de noviembre de 2018, de https://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=D2ajRUcJRO4QoSbDj1O&preferencesSaved=
  • Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683-695. https://doi.org/10.1080/13562517.2013.827653
  • Day, G. S., Schoemaker, P. J. H., & Gunther, R. E. (2004). A perfect game. En Wharton on Managing Emerging Technologies (pp. 1-23). New Jersey: John Wiley & Sons.
  • De Backer, L., Van Keer, H., Moerkerke, B., & Valcke, M. (2016). Examining evolutions in the adoption of metacognitive regulation in reciprocal peer tutoring groups. Metacognition and Learning, 11(2), 187-213. https://doi.org/10.1007/s11409-015-9141-7
  • De Corte, E. (2015). Constructive, self-regulatory, situated and collaborative learning: an approach to the acquisition of the adaptative competency in mathematics. Paginas De Educacion, 8(2).
  • Dietz-Uhler, B., & Hurn, J. E. (2013). Using learning analytics to predict (and improve) student success: A faculty perspective. Journal of Interactive Online Learning, 12(1), 17–26.
  • European Comission. (2018). Digital Education Action Plan (Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions). Brussels: European Union. Recuperado de https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0022&from=EN
  • Freeman, A., Adams Becker, S., Cummins, M., Davis, A., & Giesinger Hall, C. (2017). NMC Horizon Report: 2017 K-12 Edition. (pp. 1-55). Austin, Texas: The New Media Consortium. Recuperado de http://cdn.nmc.org/media/2016-nmc-cosn-horizon-report-k12-EN.pdf
  • Garcia-Ros, R., & Perez-Gonzalez, F. (2011). Assessment preferences of preservice teachers: analysis according to academic level and relationship with learning styles and motivational orientation. Teaching in Higher Education, 16(6), 719-731. https://doi.org/10.1080/13562517.2011.570434
  • Geels, F. W. (2005). Processes and patterns in transitions and system innovations: Refining the co-evolutionary multi-level perspective. Technological Forecasting and Social Change, 72(6), 681-696. https://doi.org/10.1016/j.techfore.2004.08.014
  • Giardina, M. (1998). A distributed interaction model for the development of intelligent networked learning diagnostic system. (T. W. Chan, A. Collins, & J. X. Lin, Eds.). Beijing: China Higher Education Press Beijing.
  • Glänzel, W., & Thijs, B. (2011). Using ‘core documents’ for detecting and labelling new emerging topics. Scientometrics, 91(2), 399-416. https://doi.org/10.1007/s11192-011-0591-7
  • Halaweh, M. (2013). Emerging Technology: What is it? Journal of Technology Management & Innovation, 8(3), 108-115. https://doi.org/10.4067/S0718-27242013000400010
  • Hernández-Lara, A. B., Perera-Lluna, A., & Serradell-López, E. (2018). Applying learning analytics to students’ interaction in business simulation games. The usefulness of learning analytics to know what students really learn. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2018.03.001
  • Houghton, W. (2004). Deep and surface approaches to learning. Engineering Subject Centre Guide: Learning and Teaching Theory for Engineering Academics, W. Houghton, ed. Loughborough, UK: HEA Engineering Subject Centre.
  • Howard, C., Di Eugenio, B., Jordan, P., & Katz, S. (2017). Exploring Initiative as a Signal of Knowledge Co-Construction During Collaborative Problem Solving. Cognitive Science, 41(6), 1422-1449. https://doi.org/10.1111/cogs.12415
  • Jiménez-Fanjul, N. (2016). Producción científica internacional en Educación Matemática. Estudio bibliométrico (1983-2012). Tesis doctoral. Universidad de Córdoba. Córdoba. http://hdl.handle.net/10396/13759
  • Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., & Freeman, A. (2014). NMC Horizon Report: 2014 K-12 Edition. (pp. 1-48). Austin, Texas: The New Media Consortium. Recuperado de http://cdn.nmc.org/media/2014-nmc-horizon-report-k12-EN.pdf
  • Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., Freeman, A., & Ludgate, H. (2013a). NMC Horizon Report: 2013 K-12 Edition. (pp. 1-40). Austin, Texas: The New Media Consortium. Recuperado de https://www.nmc.org/pdf/2013-horizon-report-k12.pdf
  • Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., Freeman, A., & Ludgate, H. (2013b). NMC Horizon Report: Higher Education Edition. (UNIR, Trad.) (pp. 1-46). Austin, Texas: The New Media Consortium. Recuperado de https://www.nmc.org/pdf/2013-Horizon-Report-HE-ES.pdf
  • Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2014). NMC Horizon Report: Higher Education Edition (pp. 1-48). Austin, Texas: The New Media Consortium. Recuperado de http://cdn.nmc.org/media/2014-nmc-horizon-report-he-EN-SC.pdf
  • Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2015). NMC Horizon Report: Higher Education Edition (pp. 1-49). Austin, Texas: The New Media Consortium. Recuperado de http://cdn.nmc.org/media/2015-nmc-horizon-report-HE-EN.pdf
  • Johnson, L., Adams Becker, S., Estrada, V., Freeman, A., & Giesinger Hall, C. (2016). NMC Horizon Report: Higher Education Edition (pp. 1-49). Austin, Texas: The New Media Consortium. Recuperado de http://cdn.nmc.org/media/2016-nmc-horizon-report-he-EN.pdf
  • Kacfah Emani, C., Cullot, N., & Nicolle, C. (2015). Understandable Big Data: A survey. Computer Science Review, 17, 70-81. https://doi.org/10.1016/j.cosrev.2015.05.002
  • Kirkwood, A., & Price, L. (2013). Examining some assumptions and limitations of research on the effects of emerging technologies for teaching and learning in higher education. British Journal of Educational Technology, 44(4), 536-543. https://doi.org/10.1111/bjet.12049
  • Leu, D. J., Kinzer, C. K., Coiro, J. L., & Cammack, D. W. (2004). Toward a theory of new literacies emerging from the Internet and other information and communication technologies. En Theoretical models and processes of reading (5th ed., pp. 1570–1613). Recuperado de https://s3.amazonaws.com/academia.edu.documents/39882371/Toward_a_Theory_of_New_Literacies_Emergi20151110-27533-1mpueq6.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1543232526&Signature=%2BesAiKLgtqjNkXa6%2BEdtHuVGxi0%3D&response-content-disposition=inline%3B%20filename%3DToward_a_theory_of_new_literacies_emergi.pdf
  • Manca, S. (2018). ResearchGate and Academia.edu as networked socio-technical systems for scholarly communication: a literature review. Research in Learning Technology, 26. https://dx.doi.org/10.25304/rlt.v26.2008
  • Manjarres, A. V., Sandoval, L. G. M., & Suárez, M. J. S. (2018a). Data mining techniques applied in educational environments: Literature Review. Digital Education Review, 0(33), 235-266. Recuperado de http://revistes.ub.edu/index.php/der/article/view/18067
  • Manjarres, A. V., Sandoval, L. G. M., & Suárez, M. J. S. (2018b). Data mining techniques applied in educational environments: Literature Review. Digital Education Review, 0(33), 235-266. Recuperado de http://revistes.ub.edu/index.php/der/article/view/18067
  • Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. Research Policy, 41(6), 955-967. https://doi.org/10.1016/j.respol.2012.02.013
  • Martin, B. R. (1995). Foresight in science and technology. Technology Analysis & Strategic Management, 7(2), 139-168. https://doi.org/10.1080/09537329508524202
  • Martin, B. R. (2010). The origins of the concept of ‘foresight’ in science and technology: An insider’s perspective. Technological Forecasting and Social Change, 77(9), 1438-1447. https://doi.org/10.1016/j.techfore.2010.06.009
  • McLean, S., Attardi, S. M., Faden, L., & Goldszmidt, M. (2016). Flipped classrooms and student learning: not just surface gains. Advances in Physiology Education, 40(1), 47-55. https://doi.org/10.1152/advan.00098.2015
  • Nguyen, A., Gardner, L. A., & Sheridan, D. (2018). A framework for applying learning analytics in serious games for people with intellectual disabilities. British Journal of Educational Technology, 49(4), 673-689. https://doi.org/http:/doi.org/10.1111/bjet.12625
  • O’Brien, J. (2018). NMC Horizon Report 2018 Higher Education | #EnlightED. Madrid: La Nave. Recuperado de https://www.youtube.com/watch?v=_F0fvxZzZL8
  • Nupur, C. (2014). World Wide Web and its jpurney from web 1.0 to web 4.0. International Journal of Computer Science and Information Technologies, 5(6), 8096-8100. Recuperado de http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.6445&rep=rep1&type=pdf
  • Pegrum, M., Bartle, E., & Longnecker, N. (2015). Can creative podcasting promote deep learning? The use of podcasting for learning content in an undergraduate science unit. British Journal of Educational Technology, 46(1), 142-152. https://doi.org/10.1111/bjet.12133
  • Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314-347. https://doi.org/10.1016/j.ins.2014.01.015
  • Pina, A. R. B., Torlà, C. B., Quintero, L. C., & Segura, J. A. (2017). Blockchain en Educación: introducción y crítica al estado de la cuestión. Edutec. Revista Electrónica de Tecnología Educativa, 0(61), 363. https://doi.org/10.21556/edutec.2017.61.915
  • Porter, A. L. (2004). Technology futures analysis: Toward integration of the field and new methods. Technological Forecasting and Social Change, 71(3), 287-303. https://doi.org/10.1016/j.techfore.2003.11.004
  • Porter, A. L., & Detampel, M. J. (1995). Technology opportunities analysis. Technological Forecasting and Social Change, 49(3), 237-255. https://doi.org/10.1016/0040-1625(95)00022-3
  • Prendes, M. P. (2018). La Tecnología Educativa en la Pedagogía del siglo XXI: una visión en 3D. Revista Interuniversitaria de Investigación en Tecnología Educativa, (4), 6-16. http://dx.doi.org/10.6018/riite/2018/335131
  • Rodriguez Triana, M. J., Martínez-Monés, A., & Villagrá-Sobrino, S. (2015). Applying Learning Analytics to a Primary School Classroom: Benefits and Barriers. Recuperado de https://infoscience.epfl.ch/record/210524
  • Rogers, P. L. (2000). Barriers to Adopting Emerging Technologies in Education. Journal of Educational Computing Research, 22(4), 455-472. https://doi.org/10.2190/4UJE-B6VW-A30N-MCE5
  • Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827-1843. https://doi.org/10.1016/j.respol.2015.06.006
  • Sampieri, R., Collado, C., & Lucio, P. (2014). Metodología de la investigación. Nueva York: Editorial McGraw-Hill.
  • San Pedro, M. O. Z., Baker, R. S., & Heffernan, N. T. (2017). An Integrated Look at Middle School Engagement and Learning in Digital Environments as Precursors to College Attendance. Technology Knowledge and Learning, 22(3), 243-270. https://doi.org/10.1007/s10758-017-9318-z
  • Shen, Y.C., Chang, S.H., Lin, G.T.R., & Yu, H.C. (2010). A hybrid selection model for emerging technology. Technological Forecasting and Social Change, 77(1), 151-166. https://doi.org/10.1016/j.techfore.2009.05.001
  • Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3), 595-610. https://doi.org/10.1007/s11192-006-0132-y
  • Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8), 1450-1467. https://doi.org/10.1016/j.respol.2014.02.005
  • Smith, K. (2018). Perceptions of Preservice Teachers about Adaptive Learning Programs in K-8 Mathematics Education. Contemporary Educational Technology, 9(2), 111-130. https://doi.org/10.30935/cet.414780
  • Srinivasan, R. (2008). Sources, characteristics and effects of emerging technologies: Research opportunities in innovation. Industrial Marketing Management, 37(6), 633-640. https://doi.org/10.1016/j.indmarman.2007.12.003
  • Stahl, B. C. (2011). What Does the Future Hold? A Critical View of Emerging Information and Communication Technologies and Their Social Consequences. En M. Chiasson, O. Henfridsson, H. Karsten, & J. I. DeGross (Eds.), Researching the Future in Information Systems (Vol. 356, pp. 59-76). Berlin: Springer. https://doi.org/10.1007/978-3-642-21364-9_5
  • Suárez-Manzano, S., Ruiz-Ariza, A., De La Torre-Cruz, M., & Martínez-López, E. J. (2018). Acute and chronic effect of physical activity on cognition and behaviour in young people with ADHD: A systematic review of intervention studies. Research in developmental disabilities, 77, 12-23. https://doi.org/10.1016/j.ridd.2018.03.015
  • Subramanyam, K. (1983). Bibliometric studies of research collaboration: A review. Journal os Information Science, 6, 33-38.
  • The Business Dictionary. (2018). What are emerging technologies? definition and meaning. Recuperado 26 de noviembre de 2018, de http://www.businessdictionary.com/definition/emerging-technologies.html
  • Torres-Toukoumidis, Romero-Rodríguez & Pérez-Rodríguez (2018). Ludificación y sus posibilidades en el entorno de blended learning: revisión documental, RIED. Revista Iberoamericana de Educación a Distancia, 21(1), 95-111. DOI: http://dx.doi.org/10.5944/ried.21.1.18792
  • UNESCO. (2015). Qingdao Declaration (Seize digital opportunities, lead education transformation) (pp. 1-54). Qindgao, China: UNESCO. Recuperado de http://unesdoc.unesco.org/images/0023/002333/233352m.pdf
  • Viberg, O., Hatakka, M., Balter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110. https://doi.org/10.1016/j.chb.2018.07.027
  • Wise, A. F. (2014). Designing Pedagogical Interventions to Support Student Use of Learning Analytics. En Proceedings of the Fourth International Conference on Learning Analytics And Knowledge (pp. 203–211). New York, NY, USA: ACM. https://doi.org/10.1145/2567574.2567588
  • Wollscheid, S., Sjaastad, J., & Tømte, C. (2016). The impact of digital devices vs. Pen (cil) and paper on primary school students’ writing skills–A research review. Computers & Education, 95, 19-35. DOI: https://doi.org/10.1016/j.compedu.2015.12.001
  • Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47, 168-181. https://doi.org/10.1016/j.chb.2014.09.034
  • Zilvinskis, J., Willis, J., & Borden, V. M. H. (2017). An Overview of Learning Analytics. New Directions for Higher Education, 2017(179), 9-17. https://doi.org/10.1002/he.20239
  • Zniber, N. (2011). Pops: A Service-Oriented Approach for Composing Personalized Courses. In L. G. Chova, I. C. Torres, & A. L. Martinez (Eds.), INTED2011 Proceedings (pp.2951-2961). Valencia: Iated-Int Assoc Technology Education & Development.