
Applied Mathematics Letters 26 (2013) 566–570

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On the local convergence of Newton’s method under
generalized conditions of Kantorovich
J.A. Ezquerro ∗, D. González, M.A. Hernández
University of La Rioja, Department of Mathematics and Computation, C/ Luis de Ulloa s/n, 26004 Logroño, Spain

a r t i c l e i n f o

Article history:
Received 11 September 2012
Received in revised form 19 December 2012
Accepted 20 December 2012

Keywords:
Newton’s method
Local convergence
Order of convergence

a b s t r a c t

Following an idea similar to that given by Dennis and Schnabel (1996) in [2], we prove a
local convergence result for Newton’smethod under generalized conditions of Kantorovich
type.
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1. Introduction

Let X and Y be two Banach spaces and F : Ω ⊆ X → Y an operator defined on a non-empty open convex domain Ω of
X with values in Y . The best-known iteration for solving the equation

F(x) = 0 (1)

is Newton’s method, which is defined as follows:
x0 ∈ Ω,

xn = xn−1 − [F ′(xn−1)]
−1F(xn−1), n ∈ N.

(2)

The first study of Newton’s method in Banach spaces was given by L.V. Kantorovich [1], who obtained a first result on the
semilocal convergence, which is known as the Newton–Kantorovich theorem. Kantorovich proved the theorem under the
following conditions on the operator F and the starting point x0:

(S1) There exists Γ0 = [F ′(x0)]−1
∈ L(Y , X) for some x0 ∈ Ω , ∥Γ0∥ ≤ β and ∥Γ0F(x0)∥ ≤ η, where L(Y , X) is the set of

bounded linear operators from Y to X .
(S2) ∥F ′′(x)∥ ≤ M for x ∈ Ω .
(S3) Mβη ≤

1
2 and B


x0,

1−
√
1−2Mβη

Mβ


⊂ Ω .

While the semilocal convergence results require conditions on the operator F (see (S2)) and the starting point x0 (see (S1)),
the local convergence results require conditions on the operator F and a solution x∗ of Eq. (1). An interesting local result,
given by Dennis and Schnabel in [2], for Newton’s method requires the following conditions:

(L1) Let x∗ be a solution of Eq. (1) such that the operator [F ′(x∗)]−1 exists, B(x∗, r) ⊂ Ω and ∥[F ′(x∗)]−1
∥ ≤ γ , with r, γ > 0.

(L2) ∥F ′′(x)∥ ≤ M for x ∈ Ω .
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Dennis and Schnabel prove, under (L1) and (L2), that for any starting point in B(x∗, ε), where ε = min{r, R} and R =
1

2γM ,
Newton’s method is convergent. The local results provide what we call a ball of convergence, B(x∗, ε). From the value ε,
this ball of convergence gives information about the accessibility of the solution x∗ of the equation to solve by the iterative
method considered to approximate x∗.

Rall in [3] and Rheinboldt in [4] give results similar to that given by Dennis and Schnabel, but with different radii for the
balls of convergence. On the other hand, Argyros in [5] generalizes the previous conditions by modifying condition (L2) by
means of a Lipschitz condition for the second derivative of F .

In this work, we analyse the local convergence of Newton’s method under generalized conditions. In particular, we
generalize the local convergence conditions given by Dennis and Schnabel in (L1) and (L2). Moreover, we observe that
the new local convergence conditions required do not reduce the accessibility of the solution when it is approximated
by Newton’s method. Furthermore, in some cases, this accessibility improves that given by Dennis and Schnabel under
conditions (L1) and (L2).

During the last fifty years, a lot of authors have studied the convergence of Newton’s method, both local and semilocal,
by modifying the conditions required to the operator F , namely (S2) or (L2), see [6–9] and the references given there.
In [10] we present a generalization of (L2) that consists of considering the condition ∥F ′′(x)∥ ≤ ω(∥x∥), x ∈ Ω , where
ω : [0, +∞) → R is a non-decreasing continuous function such that ω(0) ≥ 0. In this work, we present a generalization of
the previous condition to high order derivatives of the operator F ; in particular,

∥F (k)(x)∥ ≤ ω(∥x∥), x ∈ Ω, k ≥ 3, (3)

whereω : [0, +∞) → R is a non-decreasing continuous function such thatω(0) ≥ 0. It is clear that an interesting situation
is given when (1) is a polynomial equation of degree k, since the operator F (k)(x) is such that ∥F (k)(x)∥ ≤ M , x ∈ Ω , and
consequently F (k)(x) always satisfies condition (3). Even, for more general equations, by using Taylor’s series, Eq. (1) can be
approximated by polynomial equations.

In Section 2, we prove a new local convergence result for Newton’s method. In Section 3, we present an example where
we show that the new local convergence conditions do not restrict the accessibility of Newton’s method when it is used to
approximate a solution of a particular equation. We even find situations in which the accessibility is improved.

2. Local convergence and the order of convergence

Now, we obtain a new local convergence result for Newton’s methodwhen the operator F satisfies condition (3). For this,
we follow an idea similar to that given by Dennis and Schnabel in [2].

Theorem 1. Let F : Ω ⊆ X → Y be a nonlinear operator that is k (k ≥ 3) times continuously differentiable on a non-empty
open convex domain Ω of a Banach space X with values in a Banach space Y . Let x∗ be a solution of F(x) = 0 such that the
operator [F ′(x∗)]−1 exists, B(x∗, r) ⊆ Ω , ∥[F ′(x∗)]−1

∥ ≤ γ and ∥F (i)(x∗)∥ ≤ αi (for i = 2, 3, . . . , k − 1) with r, γ , αi > 0.
Suppose that condition (3) is satisfied and there exists the smallest positive root R of the equation

γ


k−2
i=1

αi+1

i!
t i−1

+
tk−2

(k − 1)!
ω(∥x∗

∥ + t)


t − δ = 0, (4)

where δ ∈

0, k

2k−1


. Then, there exists ε > 0 such that Newton’s sequence {xn} is well-defined and converges to x∗ for every

x0 ∈ B(x∗, ε). Moreover,

∥x∗
− xn∥ <

δ

ε
∥x∗

− xn−1∥
2, n ∈ N. (5)

Proof. Let ε = min{r, R}. First, we prove, for all x ∈ B(x∗, ε), that there exists [F ′(x)]−1 and ∥[F ′(x)]−1
∥ ≤

γ

1−δ
. For this, we

consider

∥I − [F ′(x∗)]−1F ′(x)∥ ≤ ∥[F ′(x∗)]−1
∥

 1

0
F ′′


x + τ(x∗

− x)

dτ(x∗

− x)


≤ ∥[F ′(x∗)]−1
∥


 1

0


k−1
i=2

(τ − 1)i−2

(i − 2)!
F (i)(x∗)(x∗

− x)i−2 dτ


(x∗

− x)


+

1
(k − 3)!

 1

0

 1

0

F (k) x∗
+ s(τ − 1)(x∗

− x)
 (1 − s)k−3(1 − τ)k−2

∥x∗
− x∥k−1 ds dτ



≤ ∥[F ′(x∗)]−1
∥

 k−1
i=2

1
(i − 1)!

αi∥x∗
− x∥i−1
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+
1

(k − 3)!
ω(∥x∗

∥ + ε)

 1

0
(1 − s)k−3 ds

 1

0
(1 − τ)k−2 dτ


∥x∗

− x∥k−1


≤ γ

 k−2
i=1

1
i!
αi+1ε

i−1
+

1
(k − 1)!

ω(∥x∗
∥ + ε)εk−2


ε,

since

F ′′

x + τ(x∗

− x)


=

k−1
i=2

(τ − 1)i−2

(i − 2)!
F (i)(x∗)(x∗

− x)i−2

+
1

(k − 3)!

 1

0
F (k) x∗

+ s(τ − 1)(x∗
− x)


(1 − s)k−3(τ − 1)k−2(x∗

− x)k−2 ds,
 1

0

 k−1
i=2

(τ − 1)i−2

(i − 2)!
F (i)(x∗)(x∗

− x)i−2

dτ(x∗

− x)

 ≤

k−1
i=2

1
(i − 1)!

αi∥x∗
− x∥i−1,F (k) x∗

+ s(τ − 1)(x∗
− x)

 ≤ ω(∥x∗
∥ + ε).

As ε ≤ R and R is a solution of (4), then

∥I − [F ′(x∗)]−1F ′(x)∥ ≤ γ

 k−2
i=1

αi+1

i!
Ri−1

+
Rk−2

(k − 1)!
ω(∥x∗

∥ + R)

R = δ < 1. (6)

Now, by the Banach lemma on invertible operators, the operator [F ′(x)]−1 exists and ∥[F ′(x)]−1
∥ < 1

1−δ
∥[F ′(x∗)]−1

∥

≤
γ

1−δ
.

As x0 ∈ B(x∗, ε), then the operator Γ0 = [F ′(x0)]−1 exists, ∥Γ0∥ ≤
γ

1−δ
and x1 is well-defined. Moreover,

x1 − x∗
= x0 − Γ0F(x0) − x∗

= Γ0

 1

0

 k−1
i=2

1
(i − 2)!

F (i)(x∗)(t − 1)i−2(x∗
− x0)i−2

+
1

(k − 3)!

 1

0
F (k) x∗

+ s(t − 1)(x∗
− x0)


(1 − s)k−3(t − 1)k−2(x∗

− x0)k−2 ds


(1 − t)(x∗
− x0)2 dt,

since

F ′′

x0 + t(x∗

− x0)


=

k−1
i=2

(t − 1)i−2

(i − 2)!
F (i)(x∗)(x∗

− x0)i−2

+
1

(k − 3)!

 1

0
F (k) x∗

+ s(t − 1)(x∗
− x0)


(1 − s)k−3(t − 2)k−2(x∗

− x0)k−2 ds.

Thus,

∥x∗
− x1∥ ≤

γ

1 − δ

 k−1
i=2

i − 1
i!

αi∥x∗
− x0∥i−1

+
k − 1
k!

ω(∥x∗
∥ + ε)∥x∗

− x0∥k−1

∥x∗

− x0∥

≤
γ

1 − δ

 k−2
i=1

i
(i + 1)!

αi+1Ri
+

k − 1
k!

ω(∥x∗
∥ + R)Rk−1


∥x∗

− x0∥ ≤
δ(k − 1)
(1 − δ)k

∥x∗
− x0∥,

since

k−1
i=2

i − 1
i!

αi∥x∗
− x0∥i−1

≤

k−2
i=1

i
(i + 1)!

αi+1Ri,

k − 1
k!

ω(∥x∗
∥ + ε)∥x∗

− x0∥k−1
≤

k − 1
k!

ω(∥x∗
∥ + R)Rk−1,

k−2
i=1

i
(i + 1)!

αi+1Ri
≤

k − 1
k

k−2
i=1

αi+1

i!
Ri.
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Following now an inductive argument, for all n ∈ N, we have

∥x∗
− xn∥ ≤

γ

1 − δ


k−1
i=2

i − 1
i!

αiRi−2
+

k − 1
k!

ω(∥x∗
∥ + R)Rk−1


∥x∗

− xn−1∥
2

≤
δ(k − 1)
(1 − δ)k

∥x∗
− xn−1∥,

and then ∥x∗
− xn∥ ≤


δ(k−1)
(1−δ)k

n
∥x∗

− x0∥, so limn→+∞ xn = x∗.
On the other hand, (5) follows from

γ


k−2
i=1

αi+1

i!
Ri−1

+
Rk−2

(k − 1)!
ω(∥x∗

∥ + R)


=

δ

R
<

δ

ε
.

The proof is complete. �

Note that the higher value of δ is, the greater the root R of Eq. (4) is, since ω is a non-decreasing continuous function.

Remark 2. From (5), it follows that Newton’s method has Q -order of convergence at least 2 [11]. Moreover, if δε < 1, then

∥xn − x∗
∥ <

δ

ε
∥xn−1 − x∗

∥
2

≤


δ

ε

1+2+···+2n−1

∥x0 − x∗
∥
2n <

√
δε
2n ε

δ
,

and consequently, Newton’s method has R-order of convergence at least 2 [11].

3. An example

Next, we illustrate the previous result with the following example given in [2]. We choose the max-norm.
Let F(x, y, z) = 0 be a nonlinear system, where F : Ω ⊆ R3

→ R3 and F(x, y, z) = (x, y2 + y, ez − 1). It is obvious that
(0, 0, 0) = x∗ is a solution of the system.

From F , we deduce

F ′(x) =

1 0 0
0 2y + 1 0
0 0 ez


and F ′(x∗) = diag{1, 1, 1},

where x = (x, y, z). Hence, [F ′(x∗)]−1
= diag{1, 1, 1} and γ = 1. Moreover,

F ′′(x) =

 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 ez


,

and consequently, ∥F ′′(x∗)∥ ≤ 2 = α2. Furthermore, as

F ′′′(x) =

 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 ez


,

then ∥F ′′′(x)∥ ≤ e∥x∥, so ω(t) = et if k = 3 in Theorem 1. In this case, if we choose for example δ =
3
5 − 10−3, Eq. (4)

is reduced to

2 +

t
2e

t

t −

 3
5 − 10−3


= 0, whose unique solution is R = 0.274676 . . . . Therefore, Newton’s method is

convergent from any starting point x ∈ B(x∗, 0.274676 . . .).
From the above, it follows easily that ∥F (j)(x∗)∥ = 1 and ∥F (j)(x)∥ ≤ e∥x∥, for all j ≥ 3, so αj = 1 and ω(t) = et for all

j ≥ 3. From the last data, we construct Table 1, where we show the different values of the radii R of the domains of starting
points B(x∗, R) that are obtained for different values of k.

If we compare the results that appear in Table 1 with those given by Dennis and Schnabel in [2], we can emphasize three
things. The first and most important is that our result is independent of the value r , since we can choose Ω = R3, while
Dennis and Schnabel cannot. The second is that if r < ln 2, Dennis and Schnabel obtain R =

1
4 , so we improve the domain

of starting points that Dennis and Schnabel obtain if k = 3, 4, 5, 6, 7. The third is that if r ≥ ln 2, Dennis and Schnabel
obtain R =

1
2 exp(r) , so we could improve the domain of starting points that Dennis and Schnabel obtain based on the values

of k that can be taken, although they have to be calculated previously. Observe that the radius R =
1

2 exp(r) that Dennis and
Schnabel obtain decreases exponentially depending on r , which does not occur with the values of R in our case, since they
do not decrease exponentially, as we can see in Table 1. So, if for example we choose r = ln 5 = 1.609437 . . . , Dennis and
Schnabel obtain R = 0.1, and if we choose for example k = 10000, we obtain R = 0.235051 . . . , so we can conjecture that
there will always be a sufficiently large k that allows us to improve the ball of convergence that Dennis and Schnabel obtain.
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Table 1
Radii of the domains of convergence.

k Eq. (4) R

3 t
 t
2 e

t
+ 2


−
 3
5 − 10−3


= 0 0.274676 . . .

4 t


t2
6 et +

t
2 + 2


−
 4
7 − 10−3


= 0 0.265549 . . .

5 t


t3
24 e

t
+

t2
6 +

t
2 + 2


−
 5
9 − 10−3


= 0 0.258946 . . .

6 t


t4
120 e

t
+

t3
24 +

t2
6 +

t
2 + 2


−
 6
11 − 10−3


= 0 0.254559 . . .

7 t


t5
720 e

t
+

t4
120 +

t3
24 +

t2
6 +

t
2 + 2


−
 7
13 − 10−3


= 0 0.251504 . . .

8 t


t6
5040 e

t
+

t5
720 +

t4
120 +

t3
24 +

t2
6 +

t
2 + 2


−
 8
15 − 10−3


= 0 0.249259 . . .

Results corresponding to that of Dennis and Schnabel with the bigger radii r <
√
2−1

√
2γM

and r < 2
3γM were proved under

the same conditions by, respectively, Rall in [3] and Rheinboldt in [4]. But the same comments as weremade concerning the
result of Dennis and Schnabel remain valid for the results of Rall and Rheinboldt, since the radius of the ball of convergence
depends on a bound for F ′′ or on the Lipschitz constant for F ′, which in turn depend on the value of r . In consequence,
the same conclusions are obtained. On the other hand, Argyros obtains an interesting result in [5], by requiring a Lipschitz
condition on F ′′, for which the same comments as were made above still apply.

Notice that the main advantage of our result is that it depends not on any bound calculated on the domain B(x∗, r), but
simply on the values of the successive derivatives of F at the solution x∗.
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