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ABSTRACT

Land degradation can be triggered by the abuse of chemicals that damage soil quality. Agriculture is changing the chemical and physical
properties of soils, and in vineyards, those changes are due to the use of pesticides. In order to assess the Pb and Cd content, 212 soil samples
from La Rioja D.O.Ca were analysed. Concentrations of Pb in soil ranged from 0·96 to 64·31mg kg�1 with a mean concentration of
21·26mg kg�1 in the surface layer, while they ranged from 7·97–43·93mg kg�1 with a mean of 20·83mg kg�1 in the subsurface layer.
The mean content of bioavailable lead was 1·03mg kg�1 in the surface layer and 0·76mg kg�1 in the subsurface. Cd overall average concen-
tration was 0·29mg kg�1 in the surface; in the subsurface, the mean was 0·31mg kg�1 and ranged from 0·10 to 1·22mg kg�1. The values in
the surface layers were 0·15mg kg�1 and in the subsurface layer 0·01 of Cd bioavailability. On the basis of pedogeochemical Pb and Cd dis-
tribution, balanced fertilization will be of great importance for sustainable development of agricultural wine-producers. Copyright © 2016
John Wiley & Sons, Ltd.
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INTRODUCTION

The fate of the soils of the world is related to human activi-
ties that can preserve soils ecosystems or degrade them. The
influence of human management is definitive as we can trig-
ger soil degradation processes, preserve soils or even re-
cover soil by means of rehabilitation and restorations
strategies that will bring to us again the services soils offer
to human societies (Keesstra et al., 2012; Bai et al., 2013;
Mekuria & Aynekulu, 2013; Berendse et al., 2015; Brevik
et al., 2015a). Agriculture is one of the human activities that
damages soils because of ploughing, herbicide application,
depletion of organic matter, soil structure degradation, fire
impacts or compaction (Cerdà et al., 2009; Keesstra et al.,
2014; de Oliveira et al., 2015; Laudicina et al., 2015;
Zornoza et al., 2015), and restoration and rehabilitation is
difficult and expensive as the lost soil takes millennia to re-
form (Giménez Morera et al., 2010; Jordán et al., 2010;
Brevik & Lazari, 2014; Mekonnen et al., 2015; Tejada &
Benítez, 2014; Mekonnen et al., 2015; Roa-Fuentes et al.,
2015).
Land degradation is triggered by the abuse of chemicals

that damage soil quality (Roy & McDonald, 2015; Sacristán
et al., 2015). Agriculture is changing the chemical and phys-
ical properties of soils, and in vineyards, those changes are
due to the use intense ploughing (Novara et al., 2011;
Lieskovský & Kenderessy, 2014; Costantini et al., 2015;
Martínez-Casasnovas et al., 2015; Tarolli et al., 2015), and
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the use of of pesticides (Vaudour et al., 2015). Accumula-
tion of heavy metal in soils is of concern for agricultural pro-
duction due to the adverse effects on food quality, crop
growth, and environmental health (Fergusson, 1990; Ma
et al., 1994; Brevik & Sauer, 2015; Oliver & Gregory,
2015). Those elements can accumulate in soils from a range
of different sources: weathering of minerals contained in soil
parent material (Baker & Amacher, 1982; Pacyna et al.,
1991), use of biosolids or disposal of municipal sewage
sludge and effluent recognized as an environmentally ac-
ceptable practice (Webber & Shamess, 1987; Abdul Kashem
& Singh, 1999; Manthey et al., 2000) and fertilizers or
agrochemicals (Nziguheba & Smolders, 2008; Czarnecki
& Düring, 2015). Lead and Cd are two elements released in
the environment through the natural weathering of rocks or
from various sources related to human activity, such as soil
management practices.
Lead and Cd are some of the less abundant trace metals,

with an average lithosphere abundance of around
13mgkg�1 for Pb Paterson (2011) and 0·098mgkg�1 for
Cd Heinrichs et al. (1980). Ure & Berrow (1982) calculate
worldwide averages for the metals discussed as 29·2 and
0·62mgkg�1. Not all trace elements are essential to plant
health. These elements are not required in soils, and their ac-
cumulation can have a negative impact on soil, plant health
and, in some cases, might be accumulated in the human food
chain, (Brevik & Burgess, 2013), as in wine. Therefore the
use of contaminants, included waste materials, agrochemical
and others, must be monitored and controlled.
Wine is a complex matrix, and trace elements are among

the components that contribute to its quality. The
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consumption of wine in moderate quantities contributes to
the requirements of the human organism for some essential
elements, such as Ca, Cu, Se and Zn; however, levels of
Cd and Pb may be potentially toxic (Galani-Nikolakaki
et al., 2002; Monaci et al., 2003). Environmental contamina-
tion and agricultural practices may change the multi-element
composition of wine and may endanger the relationship be-
tween wine and soil composition (Taylor et al., 2002;
Almeida & Vasconcelos, 2003; Thiel et al., 2004; Ettler
et al., 2006). For example, a major source of Pb in wine
may be related to anthropogenic winery equipment, vine
treatment and others.
Lead and Cd content in vineyard soils of La Rioja D.O.Ca

are not found in the literature. Ocio et al. (1987 a, b, c) focused
their attention only on soil characterization and classification
in a restricted area, Rioja Alavesa. The present study was
undertaken to provide a general assessment of the
pedogeochemical levels of Pb and Cd from several
Rioja D.O.Ca vineyard soils. Based on the fact that con-
centrations of trace elements in soils may be influenced by
agricultural use (Roberts et al. 1994, Longhurst et al.,
2004; Mico et al., 2006; Lambert et al., 2007; Gaw et al.,
2008), the specific objectives of this study were to (i) assess
soil Pb and Cd pedogeochemical contents in vineyard soils
and (ii) contribute to the knowledge geographic distribution
of these elements.
MATERIAL AND METHODS

La Rioja D.O.Ca is among the most famous and renowned
wine regions in the world. Rioja D.O.Ca, the most famous
wine Denomination of Origin (D.O.) in Spain, was
established in 1926, (Rioja is the oldest D.O.). It was
awarded the D.O. status, and is one of only two wine-
producing regions that have received the prestigious D.O.
Ca title. The research area, La Rioja D.O.Ca (Figure 1a), is
located on the Iberian Peninsula. The region is largely agri-
cultural land where the main produced crops are from
vineyards (63·200Has) and orchards. This region is divided
into three distinct zones: (i) Rioja Alta (upper), located in the
Figure 1. Location map of the study area and distribution sampling.
Logroño is located in 42° 27′ 56·6″N latitude and 2°26′ 20·4″W longitude.

Copyright © 2016 John Wiley & Sons, Ltd.
highlands, in the west of the region (400–500m), has an
Atlantic climate and calcareous soils; (ii) Rioja Baja (lower),
in the east (around 300m), has a Mediterranean climate,
quite dry and hot, with soils developed on fluvial materials;
and (iii) Rioja Alavesa, (coolest and wettest), situated in the
north. There are various parent materials: calcareous sedi-
mentary rock marls, molasses, limestones and gypsums, (in
terraces, glacis, ramps, etc.), in juxtaposition with a few
acidic rocks; frequently with gravel. The climate is continen-
tal with an average temperature of 12–14 °C, and the precip-
itation ranges between 300–600mm, including a long and
cold winter and short summer.
The territory of La Rioja D.O.Ca has a wide range of soil

that reflect the different nature of each and its distinct ori-
gins, differences in soil formation by factors such as parent
material, landform, vegetation, climate and age. The result
is a wide spectrum of soil types: entisols, inceptisols,
mollisols, alfisols, exceptionally aridisols, (Soil Survey
Staff, 2006); calcisols, regosols, cambisols, fluvisols,
phaeozems, leptosols and luvisols, according to the FAO-
ISRIC-ISSS (2006). For vineyards purposes, many of those
soils have some chemical and physical limitations (e.g. high-
active limestone contents) that require careful management
(García Navarro et al., 2011).
Random soils samples were collected. At each site, two

depths were sampled using a core; one representative of
the surface layer (from 0 to 30 cm) and the other from the
underlying layer or subsurface (30–70 cm). The number of
samples was 212, corresponding to 106 sample locations.
Each sampling location was identified in the field using a
Garmin (Schaffhausen, Switzerland) Trex handheld global
positioning system. A schematic diagram of the research
sampling locations is shown in figure 1.
After field sampling, all the soil samples were dried at

room temperature to a constant weight and carefully sieved
through a 2-mm mesh. The coarser material was discarded,
and the remaining fine-earth fraction was gently mixed until
it appeared to be homogeneous. Aliquots of this fraction
were randomly taken for chemical analysis. All samples
were analysed for soil texture (Day, 1965). Organic matter
(OM) content was determined by dichromate digestion
based on the Walkley–Black method. Soil reaction was esti-
mated potentiometrically after equilibration with H2O and in
0·1M KCl using a 1:2·5 soil/solution ratio. Calcium carbon-
ate content was determined using a Bernard calcimetre. Pb
and Cd were analysed after complete dissolution using a
mixture HNO3/HClO4/HF following a procedure described
in detail in previous studies (Iñigo et al., 2013). Atomic ab-
sorption spectroscopy with a graphite furnace and a Varian
(Palo Alto, CA, USA) 220 FS device were used to analyse
those concentrations. The detection limits were calculated
as three times the standard deviation of 10 sample blank
(Tüzen, 2003) and were: 0·48mgkg�1 for Pb and
0·02mgkg�1 for Cd. The content of bioavailable compo-
nents was determined with the method developed by Lind-
say & Norvell (1978). Duplicates were used in order to
assure quality control.
LAND DEGRADATION & DEVELOPMENT, 27: 1286–1294 (2016)
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The statistical descriptors (mean, standard deviation,
maximum and minimum) of the two individual trace ele-
ments were calculated using SPSS version 17 for Windows
(Microsoft Corporation, Redmond, WA, USA). As a key
factor to achieve the purposes outlined, we calculated the
enrichment factor (EF), (top/bottom ratio), as indication of
relative enrichment/depletion of elements in the uppermost
soil layer. The geostatistical study was conducted with
IDRISI 3·2.
RESULTS AND DISCUSSION

Table I provides the summary statistics for soil and the con-
centrations of Pb and Cd based on all samples (number of
samples, mean, standard deviation, variance and maximum
and minimum) for the soil layers at depths of 0–30 and
30–70 cm.
Observed textures were variable. The soil showed a sig-

nificant pH variation and low organic matter. The vast ma-
jority of subsurface material was rich in calcium carbonate;
therefore, the soil shows higher concentrations, especially
in the subsurface layer. All these data showed distinct
edaphic properties.

Pb and Cd Baseline Concentrations

Table I shows the mean, maximum, minimum, mean
and standard deviation of the concentration of Pb and Cd
in the 0–30 and 30–70 cm soil layers of La Rioja D.O.Ca
vineyards soils.

Lead
Soil Pb concentrations ranged from 0·96 to 64·31mg kg�1

(Table I) with a mean concentration of 21·26mgkg�1 in
Table I. Trace element concentrations (mg kg�1) and some properties at

N Minimum Maximun Mean

pH (S) 106 5·04 8·83 8·12
pH (SU) 106 5·24 8·85 8·21
CO3Ca (S) 106 0·00 51·75 20·37
CO3Ca (SU) 106 0·00 54·32 20·98
OM (S) 106 0·10 3·24 0·90
OM (SU) 106 0·00 3·49 1·0
Clay (S) 106 1·62 49·34 20·09
Clay (SU) 106 0·00 45·93 18·34
Pb total (S) 106 0·96 64·31 21·26
Pb total (SU) 106 7·97 43·93 20·83
Pb Bio (S) 106 0·3 10·72 1·03
Pb Bio (SU) 106 0·4 4·03 0·76
Cd total (S) 106 0·10 0·65 0·29
Cd total (SU) 106 0·10 1·22 0·31
Cd Bio (S) 106 0·01 0·03 0·15
Cd Bio (SU) 106 0·0 0·40 0·01
Pb total

Cd total

Soil properties (pH, organic matter %, calcium carbonate % and clay contents %) a
available Pb and Cd contents in 212 vineyard soil samples. Also pedogeochemical bas
S, surface horizon; SU, subsurface horizons; Bio, bioavailable; EF, enrichment fa

Copyright © 2016 John Wiley & Sons, Ltd.
the surface, while in the subsurface, they ranged from 7·97
to 43·93mgkg�1 with a mean of 20·83mgkg�1. The mean
content of bioavailable Pb was 1·03mgkg�1 in the surface
layer and 0·76mgkg�1 in the subsurface. All these concen-
trations were similar to typical background concentrations
found for 224 undisturbed soil samples of La Rioja soils
(Iñigo et al., 2013). Those values also were generally low
in comparison with concentrations found in other parts of
Spain (Rodríguez Martín et al., 2006; Micó et al., 2007).
The soil Pb contents are similar in both layers. Adriano
(2001) found a mean concentration of 35mgkg�1 in Spain,
30mgkg�1 in France and 39mgkg�1 in Europe. (Table II)
The mean soil Pb contents in our study were similar to

those reported by Kabata-Pendias & Mukherjee (2007).
Holmgren et al. (1993), found a mean concentration of
12·3mgkg�1 in agricultural soils, while Zanini & Bonifacio
(1992) found concentrations similar to the present study
(21mgkg�1) in soils samples from agriculture sites. Our
values are much lower than those reported by Onyari et al.
(1991), from roadside soils in Kenya where Pb is still used
as a gasoline additive, and found that concentrations within
Nairobi City varied from 137 to 2196mgkg�1 with a mean
of 659mgkg�1.
Lead contents found in this study were lower than the

European Union upper limit of 300mgkg�1 (European
Commission (EC), 1986); therefore, higher mean concentra-
tion has been found in European soils than in La Rioja D.O.
Ca soils. Lead content values in this study were well below
the soil guidelines that have been established for several
countries (Morgan, 2013). Moreover, concentrations in the
area did not exceed recommended guidelines for environ-
mental soil health 86/278/CEE in agricultural soils with
pH> 7·3 (European Commission (EC), 1986).
the soil quality.

Standard Deviation Variance EF RV

0·64 0·41
0·50 0·25
14·55 211·93
14·39 207·33
0·54 0·29
0·82 0·68
9·30 86·65
9·70 94·25
8·98 80·65
6·90 47·6
1·40 1·97
0·67 0·46
0·11 1·23
0·18 3·25
6·27 3·94
8·67 7·52

1·02 39·22
34·63

0·93 0·51
0·67

nd descriptive statistics (median, standard deviation, etc.) of total and plant-
elines (RV) and enrichment factor (EF) of Pb and Cd in the D.O.Ca Rioja region
ctor; RV, reference value.

LAND DEGRADATION & DEVELOPMENT, 27: 1286–1294 (2016)



Table II. Correlation matrix (surface horizons)

pH CO3Ca OM Clay Pb

pH
CO3Ca 0·296
OM 0·002 0·095
Clay 0·132 0·267 0·007
Pb 0·030 �0·297 �0·036 0·046
Cd �0·114 �0·128 �0·130 �0·071 0·467

Significative correlation at 0·01 level (bilateral)
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Cadmium

The concentration ranged from below the detection limit to
0·65mgkg�1 (Cd was not detected in 34 surface layer, be-
cause they were below the detection limit <0·02mgkg�1).
The overall average concentration was 0·29mgkg�1 in the
surface; in the subsurface, the mean was 0·31mgkg�1 with
a range from 0·10 to 1·22mgkg�1.
The concentration range for total Cd was higher than the

concentration range of 0·07–0·3mgkg�1 reported by
Agbenin et al. (2009). Soil Cd levels found in this study
were well below acceptable soil limits established by many
countries (Morgan, 2013).
Soil contents found in this study are in line with what has

been found in other soils of La Rioja (Iñigo et al., 2013).
The average Cd levels are below values established as
excessive (5mgkg�1) by Adriano (1992), who found mean soil
contents of 1·70mgkg�1 for Spain, 1·76mgkg�1 for Holland,
0·95mgkg�1 for Norway and 1·0mgkg�1 for Sweden.
Cadmium concentrations are comparable with those re-

ported by Bowen (1979): 0·1–2·0mgkg�1 in agricultural
soils. In relation to other agricultural soils Holmgren et al.
(1993) reported an average of 0·26mgkg�1 in USA, and
Chen et al. (1997) reported 0·8mgkg�1 in Hong Kong. In
general, concentrations in our study were below the
1–3mgkg�1 limit recommended by the European Union and
did not exceed recommended guidelines for environmental
soil health 86/278/CEE on agricultural soils with pH>7.

Statistical Correlations

Strong relationships (p< 0·05) were found Pb for
surface/Pb subsurface and Cd surface /Cd subsurface, as
found by Kumad et al. (1989). It should be stressed that
both total Pb and Cd content showed negative relationships
with calcium carbonate content (Bini et al., 1988). These
trends in the concentrations described seem to be
related to the calcium carbonate of neoformation, because
Cd can be fixed as CdCO3 (Barona & Romero, 1996;
Ramos et al., 1994; Moreno et al., 1996). Significant
positive correlations were observed between Cd and clay
contents in subsurface layer. The clay provides Cd with
protection from water leaching and the Cd is made avail-
able in the soil as a plant nutrient. Bioavailable Cd
positively correlated with the amount of organic matter.
Therefore, clay content and organic matter content
modified the Cd properties, (Angelone et al., 1988; Bini
et al., 1988; Basta et al., 1993; Ramos et al., 1994; Alvim
& Lourenco, 2000; Lafuente et al., 2008).
Copyright © 2016 John Wiley & Sons, Ltd.
Variability in Pb and Cd across Rioja D.O.Ca

Soil Pb and Cd in the sampling area are dependent on the soils
and topography. In the present study, soil sampling reflected
mainly soil type (including slope characteristics), recent soil
amendments and field boundaries tillage. The multivariate
statistical and GIS-based approach has been used by
Facchinelli et al. (2001) and Lin (2002) to identify variations
of heavy metal sources in soils. The maps presented in
Figures 2 and 3 demonstrate the variability in Pb and Cd
across the Rioja D.O.Ca vineyard region and represent the
pedogeochemical baseline. These concentrations show a large
scale pattern, with the highest values in the southern areas and
decreasing concentrations towards the north.

Lead
A heterogeneous distribution of total Pb was found
(Figure 2a), attributable to differences in parent materials con-
tents and soil processes, whereas the bioavailable Pb contents
showed a homogenous distribution (Figure 2c). Rioja Alta
sector showed a greater level of total Pb in surface and subsur-
face layers while it was relatively low in Rioja Baja.
Frequency concentration in front of intervals showed

three surface layer Pb populations: the first with an average
of 20·02mgkg�1, (pertaining to 95% of the soil samples);
the second with a 41·15mgkg�1 concentration (3% of the
soil samples within this area); and the third with a mean con-
centration of 101·mgkg�1 (2% of the soil samples). In the
subsurface, there were three populations: the first with an
average of 11·62mgkg�1 (corresponding to 15% of the soil
samples), the second with 21·47mgkg�1 (80% of the
soil samples) and the third with 38·13 mg kg�1 (5% of the
soil samples). Nearly 100% of the soil samples ranged
between 11·62–41·15 mg kg�1. We can infer a geological
origin by comparing surface and subsurface maps. We take
into account that the soil processes are of low intensity by
the abundance of carbonate and low rainfall; also, hydrolytic
weathering and the current pedoclimatic conditions exercise
its influence on weathering processes and the geochemical
pathways. So many times, the soils morphology is very
simple: Ap-C or Ap-Bw-C. Pb distribution content shows,
in the frequency concentration / intervals, a strongly skewed
distribution with a mean value of 20·02 mgkg�1.

Cadmium
Heterogeneity of Cd contents is displayed in the maps
(Figure 3). Some soils of La Rioja Alta and Rioja Baja show
higher concentrations, whereas relatively low values are
LAND DEGRADATION & DEVELOPMENT, 27: 1286–1294 (2016)



Figure 2. Spatial Pb content (values in mg kg�1) observed in the vineyard soils of La Rioja (D.O.Ca). (a) Surface Pb content that reflects baseline levels. (b)
Surface bioavailable Pb content. (c) Subsurface Pb content. (d) Subsurface bioavailable Pb content.
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observed in some zones (Figure 3a). Cadmium bioavailable
contents are also heterogeneous in the region (Figure 3c).
Cadmium may be derived from the parent material (Cook
& Freney, 1988) or have an anthropogenic origin (Czarnecki
& Düring, 2015).
In the surface layer, almost all Cd values were below

0·2mgkg�1. Five Cd populations were identified: the first
with an average of 0·05mgkg�1, (corresponding to 15%
of the soil samples); the second with a 0·061mgkg�1 con-
centration (5% of the soil samples within this area); the third
with a mean concentration of 0·149mgkg�1 (60% of the soil
samples); the fourth with a 0·317mgkg�1 mean concentra-
tion (10% of the soil samples); and finally, the fifth with
0·479mgkg�1 (10% of the soil samples). There were four
Cd populations in the subsurface layer: the first with an av-
erage of 0·134mgkg�1 (corresponding to 30% of the soil
samples); the second with 0·261mgkg�1 (corresponding to
60% of the soil samples); the third with 0·489mgkg�1

(8% of the soil samples); and the fourth with 0·840mgkg�1

(2% of the soil samples).

Reference Values

Over the last decade, there has been a significant amount of
research conducted in Spain having the goal to develop
baseline values for trace elements (Junta de Andalucía,
2004; Jiménez Ballesta et al., 2010, etc.). Several ap-
proaches have been documented in the literature for deter-
mining the background TRACE METAL levels in soils
Copyright © 2016 John Wiley & Sons, Ltd.
and sediments (Matschullat et al., 2000; McIlwaine et al.,
2014). Because anthropogenic contamination can be
present, background concentrations must be derived from
statistical analyses applied to a dataset ‘clean’ of outliers.
Basic statistics providing ‘baseline values’ (Reimann et al.,
2005; Mrvić et al., 2011) and geostatistical predictions
(Saby et al., 2009, 2011) are various methods for estimating
the natural levels of TMs in a studied soil dataset.
The Pb and Cd baseline levels were determined after

removing the outliers. Figure 4 (a and b) show the range
of Pb and Cd contents in soil samples in the studied area
as box plot diagrams. We used the following formula:

Reference value ¼ meanþ 2�SD (1)

(Gil et al., 2004; Micó et al., 2007; Jiménez Ballesta
et al., 2010). The final reference values were 39·22mgkg�1

for Pb and 0·37mgkg�1 for Cd.

Implications

Trace elements in agro-ecosystems may be inherited from
soil parent materials or result from human activity-related
inputs. The results show that Rioja D.O.Ca soils display a
wide variety of elemental Pb and Cd contents. In a previous
study, Iñigo et al. (2013) reported Pb and Cd contents in
undisturbed soils of this region (La Rioja) almost identical
those found in the vineyard soils of this study. In compari-
son with agricultural soils of Spain, (Rodríguez Martín
et al., 2006 and Rodríguez et al., 2008), soils in the
LAND DEGRADATION & DEVELOPMENT, 27: 1286–1294 (2016)



Figure 4. (a) Boxplot of Pb concentrations (mg kg�1) in vineyard soils from La Rioja D.O.Ca. Outlier concentrations were mainly associated with agricultural
practices (fertilizers and agrochemicals application) and with traffic from surrounding areas. (b) Boxplot of Cd concentrations (mg kg�1) in vineyard soils from

La Rioja D.O.Ca. Probably the source of outlier concentrations is the use of phosphate fertilizer, which contains cadmium as an impurity.

Figure 3. Spatial Cd content (values in mg kg�1) observed in the vineyard soils of La Rioja (D.O.Ca). (a) Surface Cd content that reflects baseline levels. (b)
Surface bioavailable Cd content. (c) Subsurface Cd content. (d) Subsurface bioavailable Cd content.
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presentstudy have low or similar concentration values of Cd
and Pb.
Asadi et al. (2012) and Ibáñez et al. (2015) found that the

integrated effects of topography and land use determined soil
properties. Topography is a relevant factor controlling soil
erosion processes through the redistribution of soil particles
and soil OM (Cerdà & García-Fayos, 1997). The range of soil
erosion rates in vineyards is diverse because of the different
land managements, climate conditions, parent material and
Copyright © 2016 John Wiley & Sons, Ltd.
soil properties, but generally, the soil and water losses are high
and non-sustainable (Novara et al., 2013). The topographic
factor has been traditionally included in the study of the spatial
distribution of soil properties (Ozgoz et al., 2013; Wang &
Shao, 2013; Brevik et al., 2015b). Some Pb concentration
values could be ascribed to Pb deposition (from vehicles
emissions rather than from fertilizers and pesticides).
The pedogeochemical baseline concentration summarized

provides a baseline value for assessing soil quality and can be
LAND DEGRADATION & DEVELOPMENT, 27: 1286–1294 (2016)
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used as screening levels to determine if naturally occurring Pb
and Cd are present at ambient concentrations at the vineyard
site. The study showed that Pb and Cd concentrations of the
soils in the study area varied from one soil type to another.
CONCLUSIONS

Results of this research revealed that Pb and Cd concentra-
tions in the vineyard soils of La Rioja D.O.Ca were similar
with background concentrations found in other soils around
the world. These concentrations show a large scale pattern,
with the highest values in southern areas and decreasing
concentrations towards the north. However, there is a con-
siderable local variation. Cadmium and Pb mean values
were 0·29 and 21·26mgkg�1, respectively. This data pro-
vides a reference for the status of Pb and Cd in vineyard
soils for La Rioja D.O.Ca and will therefore be particularly
useful for the evaluation of anthropogenic inputs as a result
of land use activities. To evaluate the potential negative re-
percussions on the quality of agricultural soils by the pres-
ence of Pb and Cd, the spatial variability maps could help
the understanding of potentially hazardous areas for agricul-
tural crops (human and livestock).
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